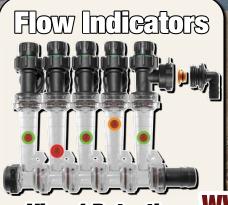
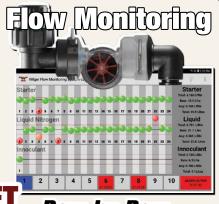


WILGER
SPRAYER &
LIQUID FERTILIZER
PARTS CATALOG
- METRIC -


REVISED JULY 2024

WORLD CLASS SPRAYING COMPONENTS



Visual Detection of Plugged Lines

FOR MORE INFORMATION VISIT

WWW.WILGER.NET

Row-by-Row Flowmeter

Units: Metric (Litres/Hectare)

©Copyright 2024 Wilger Industries Ltd. All rights reserved.

New & Featured Products 3-6
Dual-Spray 4+1 [DS41] Nozzle Bodies
Spraying Resources & Topics7-11
Combo-Jet Spray Nozzle Advantage & FAQ
Spray Nozzles, Metering & Adapters 12-32
ER Series Overview, 80° & 110°
Dual-Spray 4+1 [DS41] Nozzle Bodies33
Combo-Jet Swivel Bodies (1-3 Outlets)

	Dry Boom Nozzle Bodies41-44
	Compact Nozzle Bodies & Swivel Turret Adapters
	Sprayer Plumbing 44-51
	Sprayer Boom Clamps
	Liquid Fertilizer Manifold Parts 52-54
語が日本は	O-ring Seal Check Valves
	Liquid Fertilizer Monitoring55-63
では、一般の対象を対象がある。	FLOW VIEW Visual Ball Flow Indicators

For Terms and Conditions, visit www.wilger.net

Wilger products are sold to original equipment manufacturers and authorized distributors, and are available to end users through retail dealerships.

Warranties - Wilger warrants that its products are free of defects in material and workmanship and perform to each product's specifications. The foregoing warranties are in lieu of all other warranties, written or expressed, including, but not limited to, those concerning suitability for a particular purpose. Claims under these warranties must be made promptly within one (1) year after receipt of goods by the buyer. Any warranty action by the buyer must be expressly pre-authorized by Wilger.

Technical Assistance - Wilger personnel are available to provide technical assistance in the choice or use of products furnished to the buyer and will do so free of charge. Wilger assumes no obligation or liability for any such advice, or any consequences occurring as a result of the application of such advice. The buyer is solely responsible for the selection of the appropriate product(s) and the appropriate application to the intended end use.

Limitation of Liabilities - Except for claims for bodily injury, Wilger's liability for any and all claims arising out of the purchase of the product shall not exceed the billed or billable value of the product. In no case will Wilger be liable for any consequential damages or loss of profit, even if Wilger has been advised of the possibility of such damages.

NEW & FEATURED PARTS [Page 1]

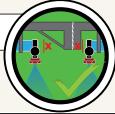
WILGER Dual Spray 4+1 [DS41] Nozzle Bodies

The ultra-compact 'DS41' nozzle body integrates a single by-pass nozzle body (optional for spot spray or Dual PWM) as well as a robust 4-nozzle turret.

This new generation of nozzle bodies is designed to fit compact boom frames, providing the benefit of stacked nozzle bodies in a much smaller and robust package with new product designs to 'Right' Version

improve fit and function. 'Left' Version 41900-00

Spring-Lock Turret Positive Turret Positioning


41901-00

Ability to spray with one or both nozzles independent of eachother.

Super Compact Space Saving

Chemical & Acid Resistant

New Robust Design

> Compact for 10" spot spraying spacing

COMBO-RATE Boom End Flush Valves, QF100 Ultra Compact & Offset Elbows

A series of super compact fittings including the last spray nozzle body, full flush valve, and recirculation ports.

Super Compact **Boom Ends**

Cuts out Boom

Recirculating boom port

> 2x Stackable COMBO-RATE nozzle body port

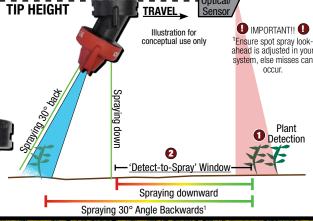
Full ID ORS Flush Valve

Recirculating **Spray Systems**

©@MI3O-J∃T₀ DX SPOT SPRAY NOZZLES & 30° Nozzle Adapter

Narrow-angle drift reduction nozzles for spot spraying

27361-00


DX60-04 PWM APPROVED

Available in 20° 40° 60° **Nozzle Angles**

Available in DX sizes -015 to -125

311 #40219-00 30° Adapter For back or front,

For Optical, Spot and Broadcast spraying on single nozzle 25cm nozzle spacing spraying at 30° Looking to spray faster with your spot spray system? Consider using the new 30° adapter to tolerate faster speeds

NEW & FEATURED PARTS [Page 2]

COMBO-JET® 30/50 Adapter

40442-00

COMBO-JET outlet to 30° & 50° front/back COMBO-JET outlets

-Quarter Turn-

Perfect for cereal-head fungicide & other applications benefiting from angled spray

Use it with the new DS41 nozzle body for angled spraying in tight sprayer boom frames

INSTA-JET insert for COMBO-JET®

40262-00

The Insta-Jet insert snaps into any COMBO-JET1 nozzle to increase responsivity to PWM nozzle start and stop

What is high-responsivity spraying?

The Insta-Jet insert speeds up and extends the duration of optimal spray pattern by reducing the effective 'start' and 'stop' time required to produce a desired spray. This is especially important for spot spraying that has intermittent nozzle flow interruptions.

1Not compatible w/ UR series or with use of select nozzles/adapters

30° Angled Nozzle Adapters

Nozzle adapters give the ability to angle a nozzle forward or backward, depending on needs for crop-adapted spraying. Commonly outfitted on spot spraying systems to increase potential spray speed.

Improved performance at higher pressures

COMBO-RATE Manifolds

Replacing a yard sprayer manifold? Building your own yard or ATV sprayer?

For setups needing: Pres. Gauge Left/Right Wing(s) Spray Gun Pressure regulator valve

NEW 3-Hole Fertilizer Streamer (FS3) Nozzles

Precision molded & color-coded liquid fertilizer streamer caps for consistent liquid fertilizer with less plant burn.

> Includes metering orifice and deflector plate in a single part number for easy ordering.

50cm

17cm

Available in sizes for 0.400L/min - 7.5L/min

Simply input your intended application rate(s), speed, nozzle spacing and you are well on your way to finding the best fertilizer streamer nozzle for your spray applications.

NEW & FEATURED PARTS [Page 3]

COMBO-RATE® Top Turrets & Double-Down

A top take-off turret changes the orientation of the module for larger PWM solenoids. The top-turret is available with new double-down spray outlets.

COMBO-RATE top-turrets are compatibility with all stacking COMBO-RATE parts.

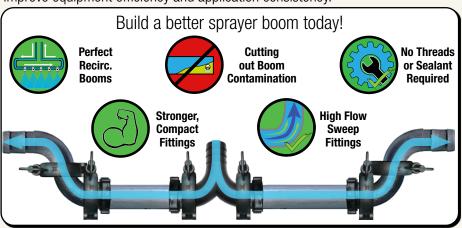
High Flow Nozzle Bodies (21/32")

Nozzle bodies for 21/32" high flow inlet holes available in COMBO-JET, COMBO-RATE and new

COMBO-RATE® Angled End Body for Fence-row spraying

41137-00

A new COMBO-RATE end body that provides a swivel joint that is available to be locked in 15° increments¹ for crop adapted spraying or fence-row nozzle spraying.


the new COMBO-RATE Boom End Flush Valve for a compact and protected fence-row nozzle

Perfectly paired with

¹Note on adjust-ability - Some sprayer manufacturers choose to have swivel end bodies permanently glued to position/angle. These swivel end bodies would NOT be adjustable, and removal of glue and re-adjustment would void warranty.

Quick Flange Sprayer Boom Fittings

The sprayer boom fittings for the next generation of sprayers, equipped to improve equipment efficiency and application consistency.

New O-Ring Seal Fittings, Assemblies & Kits

3/8" to 1'

hose sizes available

20576-00 50 mesh strainer assembly

ORS in-line strainer attaches to any ORS

fitting

20576-02

50 Mesh strainer

cartridge

¹Easier removal & insertion shipping in 2024

> 20509-00 ORS-M to Double Push-in-tube

20549-00 ORS to Square Lug Outlet for iaŭid Fertilizer_

NOTE: Ensure proper strain relief or mounting is added to ensure minimized stress on fitting ioints in complex manifold configurations

NEW & FEATURED PARTS [Page 4]

Wilger Electronic Flow Monitoring System ECU200 Release

A new compact ECU that includes the first 16CH node for more compact systems Connects the

ECU200 Series Kit (#20606-00) includes:

#20606-01 ECU ONLY

Back View: New position for ECU Serial Number (9 digit serials now used)

CAN to Power

battery harness to the ECU

#20606-02 Connects 'Node 1' quad-sensor harnesses A/B/C/D

4x #20585-00 12v batterv harness #20603-02 Antenna #20603-03 #20606-03

What about other EFM parts?

All parts beyond this kit are shared between ECU100 and ECU200 parts.

Wilger Electronic Row-By-Row Flow Monitoring System

The serviceable flowmeter designed & built specifically for agricultural chemical & liquid applications

Wilger Flow Monitoring System v2.6.4 Starter Starter Up to 3 products monitored on one system 4 5 6 7 Yellow/Red balls & lines Liquid Nitrogen show custom alarms Liquid Rate: 21.7 L/ha vg: 0.365 L/Mir 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Total: 31.8 Litr Innoculant Innoculant Rate: 6.3 L/ha Alarm button by Two View Options: tab [mutable] Single product/screen Multi-product/screen

Fittings Swivel 360°

Modular Design for **Any Size Equipment**

Serviceable Flowmeter for Ag.

High Accuracy **Flowmeter**

Wilger Product Literature & Tools

Wilger provides free printed product literature, prices lists and tools. Request a copy today. All brochures are also available at www.wilger.net

Tip Wizard Updates

Tip Wizard has new features coming! Double-down spraying, spot spraying and more!

Tip Wizard aims to lead the industry as the best spray tip calculator for broadcast applications.

WHERE TO BUY WILGER PRODUCT To find a list of local dealers/retailers and distributors in your area, visit the WILGER.net 'WHERE TO BUY page, to easily enter your address to find local Wilger product.

The COMBO-JET. Spray Nozzle Advantage

MR110-06

Less plugging, as the path of flow always gets larger

40% longer strainer that snaps & seals into place

SR / MR / DR / UR 90% 75% 90%+ **Drift Reduction Series**

Cap color matched to flow rate

Super long-lasting stainless steel spray tip The most versatile spray tips for Pulse Width Modulation Systems (e.g. Capstan Pinpoint®/EVO®, Case AIM Command®, John Deere ExactApply®, IntelliSpray®, Raven Hawkeye®, & more)

Spray tip & cap are held together as one piece

Easy-to-read label

Best educational spray tip charts & tools provided to select the best spray tips

Combo-Jet tips use a modern pre-orifice & closed chamber design that produces significantly less drift, creates solid mass droplets, for maximum spray velocity and more meaningful spray.

Without needing consistent air induction for drift reduction,

Combo-Jet spray tips set the standard for Pulse Width Modulation (PWM) spraying system nozzles.

WILGER.NET has the most useful spray tip selection help in the world.

TIP WIZARD ONLINE

EXCEL-BASED CHARTS

WILGER CATALOG

COMBO-JET® ER/SR/MR/DR/UR Spray Tips - What is the difference?

The sliding scale of droplet size means at any flow rate, you can match your desired spray quality.

	STATE WAS IN THE STATE OF THE S					
	Comparison Criteria	ER Series Extended Range	SR Series Small Reduction	MR Series Mid-Range Reduction	DR Series Drift Reduction	UR Series Drift Reduction
	Spray Tip Design	Conventional Flat Fan	Pre-orifice Drift Reduction	Pre-orifice Drift Reduction	Pre-orifice Drift Reduction	Dual Chamber I
語が	Spray Quality @40PSI	Medium	Coarse	Extremely Coarse	Extremely Coarse	Ultra-Coa
	Droplet Size ¹ @40PSI	Smallest (246µ VMD¹)	Medium (371μ VMD¹)	Large (474µ VMD¹)	Very Large (529µ VMD¹)	Ultra Coarse (63
	% <141μ² % <600μ³	20% of volume < 141µ 94% of volume <600µ	8% of volume < 141µ 89% of volume <600µ	4% of volume < 141μ 74% of volume <600μ	2% of volume < 141μ 64% of volume <600μ	UR spray tips are special designed for certain chemic that require exceptional of
400	Drift Potential	Most likely to drift	Lower drift potential	Major reduction in drift	Very low drift potential	They are not be to be repl spray tip series that are no
	Coverage	Best	Excellent	Very good	Good	on the chemical label. A up-to-date label info

¹Based on an XX110-06 nozzle @ 40 psi (2.75 BAR)

²Droplets smaller than 141µ are more likely to drift. 141µ is used as a standard for estimating driftable fines.

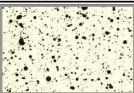
³Droplets smaller than 600μ provide better coverage. Droplets > 600μ consume more spray volume, reducing overall coverage

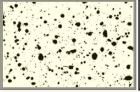
Drift Red.

arse


633µ VMD1)


cialty spray tips, emical applications al drift reduction.


eplaced with other not approved to be the chemical label. Always follow up-to-date label information.


Refer to chemical application label for

More information available at www.w.

Selecting the Correct Spray Quality & Droplet Size

Diffitus Effects

Generally speaking, smaller droplets deposit on the target more effectively than larger droplets, but larger droplets will drift less. So, when balancing drift control and efficacy, ensure to follow chemical labels and guidelines to designate the required spray quality and droplet size.

Where to find target spray quality or droplets izea

Depending on the chemical, as well as the different methods and modes of applications, some chemical labels may have less/more information. In general, chemical labels will have a description of how it should be applied, in the form of an ASABE spray classification recommendation, or a minimum spray classification (e.g. Spray at least ASABE Coarse). Some chemical label will also stipulate which nozzles can be used.

Application Information: Minimum volume requirement on chemical label Water Volume: Minimum 22 L per acre.

Reference max pressure for conventional nozzles like ER series. Try avoid conventional (non-drift reduction) spray tips.

Nozzles and Pressure: 30 to 40 psi (210 to 275 kPa) when using conventional flat fan nozzles.

Low drift nozzles may require higher pressures for proper performance. Use a combination of nozzles and pressure designed to deliver thorough,

even coverage of ASABE coarse spray. Droplet spectrum recommendation for balance of drift & coverage.

ASABE S-572.1 Classification Category	Color Code	Estimated VMD Range for Spray Quality*	Contact Insecticide & Fungicide	Systemic Insecticide & Fungicide	Contact Foliar Herbicide	Systemic Foliar Herbicide	Soil-Applied Herbicide	Incorporated Soil-Applied Herbicide	Fertilizer
Extremely Fine (XF)	Purple	Under 60							
Very Fine (VF)	Red	60-105							
Fine (F)	Orange	106-235							
Medium (M)	Yellow	236-340							
Coarse (C)	Blue	341-403							
Very Coarse (VC)	Green	404-502							
Extremely Coarse (XC)	White	503-665							
Ultra Coarse (UC)	Black	Over 665							

The above table provides general guidelines regarding droplet size and spray quality used in most spray applications.

It is always required that you carefully read and follow updated chemical manufacturers application label and instructions.

*NOTE: VMD range does not classify spray quality. Always ensure spray quality is followed first. VMD is a supplementary figure, and it is normal that nozzles with similar VMD can be classified into different spray qualities.

What about Multi-Tip Spraying? When to consider Double-Down & Angled Spraying

Potential problems with HIGH FLOW applications (140L/Ha+) with a single spray nozzle: Spraying high volume out of a single tip can produce droplets that are 'too large" to be effective for coverage, which make for less effective spray application.

Using multiple spray tips at the same time can provide substantial gains in effective coverage into crops or applications that otherwise would be very difficult to cover; however, multi-tip spraying should not be used without reason.

A typical time to use **Multi-Angle** spraying:

For improved coverage on a vertical growing target (e.g. wheat) when you are needing to paint both sides of the plant with fungicide. (e.g. Fusarium Head Blight)

A typical time to use **Double-Down** spraying:

For high rate applications that rely on consistent coverage in a dense canopy. Use nozzles to produce a meaningful mix of coarser and finer spray to hit different levels of the canopy.

Pairing already-owned nozzles to make a dual nozzle pair:

Much of the time, an operator already has 1-2 nozzles on the sprayer that could be stacked as a pair, so it is an effective way to use existing nozzles to improve spray application with very little cost.

B

A First-timer's look at Tip Wizard

Beginner's Guide to using Tip Wizard

- Choose application units, spray system type, and search function (e.g. Search for tips)
- **Enter** application rate, spraying speed¹, nozzle spacing, and spray tip angle². Since PWM systems can modulate flow by changing the spray duration, enter the MAX typical spraying speed ²Spray tip angle required is based on nozzle spacing and boom height. Always maintain 100% overlap.
- **Enter** target spray quality or target droplet size (microns).

<This is where Tip Wizard gets more useful>

Each chemical used in agricultural spraying has different spray quality requirements for best efficacy and also to maintain tolerable levels of driftable fines in ideal conditions. Using the droplet size (VMD) can allow a more advanced way to filter through series of tips. In the event a target spray quality is NOT possible, widening the spray quality to SEE ALL may be required. (e.g. targeting MEDIUM spray quality with nozzle sizes too large to produce M)

Where to find target spray quality or droplet size?

Depending on the chemical, as well as the different methods and modes of applications, some chemical labels may have less/more information. In general, chemical labels will have a description of how it should be applied, in the form of an ASABE spray classification recommendation, or a minimum spray classification (e.g. Spray at least ASABE Coarse)

Application Information: Minimum water requirement on chemical label by law conventional nozzles like ER series.

Water Volume: Minimum 22 L per acre.
 Nazzles and Pressure: [30 to 40 psi (210 to 275 kPa) when using conventional flat fan nozzles. In yavoid non-drift reduction lips.
 Low drift nozzles may require higher pressures for proper performance. Use a combination of nozzles and pressure designed to deliver thorough. [even coverage of ASABE coarse spray.] Displet spectrum recommendation for balance of drift & coverage.

For the example chemical label application information, we'd have a classification of COARSE droplet size to follow. Considering the mode of application as well as the action (e.g. systemic herbicide vs. contact herbicide), you can choose the spray quality that would suit your conditions as best as possible. REMEMBER: the larger the droplet size/VMD, the coarser the spray, resulting in less coverage

For advanced users, using a VMD droplet size can further filter into a spray quality to make it easier to compare one series to another. For an example, we might find we typically have windier conditions, so try filter our results to stay around 375µ-400µ for our targeted droplet size.

Select the Best Spray Tip for your needs.

Based on the operating speed, pressure, spray quality, and while also gauging the last few columns (VMD, % drift, %

Picking Spray Tips for Auto-Rate Controlled Sprayers

1 STEP 1: Size Your Tip Since the application rate must be consistent, selecting a tip sized to the required rate over the actual sprayer speed range is critical. It is recommended to use Tip Wizard, as it will adjust the chart specifically for any application rate, not just common pairs of rate & speed.

FOCUS ON: SPEED & PRESSURE for a required APPLICATION RATE

Speed and pressure dictate a spray tip's ability to match a rate, and we must ensure our typical travel speed follows a reasonable pressure range. Meet your minimum speed (e.g. turning) within the operational pressure range. Having pressure too low in slow spots can lead to spotty coverage. Once you have referenced your chart to find your applied rate to your speed, you will find a certain nozzle size will be most effective.

*FOR PWM SPRAYERS (DUTY CYCLE): Since you have more control of your pressure, your sprayer will typically allow for a wider selection of tip size. Try to pick a size that allows a duty cycle of 60-80% at your typical sprayer speed, allowing sufficient speed up/down.

STEP 2: Filter to Your Spray Quality Each chemical will require a nozzle spray quality (for labels that do not, consult chemical representative or agronomist, or general guide based on mode of action), since you have selected your tip size (e.g. 110-04) you can now find the best option within the series available in that nozzle size. The ER/SR/MR/DR/UR series differ based on spray quality & drift reduction.

FOCUS ON: 'ASABE \$572' SPRAY CLASSIFICATION

Since the pressure is dictating the spray quality, you'll want to filter out any tip series that cannot apply the recommended spray quality.

*FOR PWM SPRAYERS (Pressure Selection): Your spray quality can be changed with changing of sprayer pressure. This means instead of maintaining the required quality through a fixed operating pressure range, you can maintain a more flexible pressure range (provided duty cycle is OK).

STEP 3: Double Check It is worthwhile to review extra information provided for the spray tip, and re-evaluate if necessary. While the extra information in extrapolated from lab conditions without active ingredients, and cannot be considered actual, but it does lend to paint a picture of differences between series.

[ADVANCED] FOCUS ON: Spray % <141μ, Spray % <600μ, VMD (μ)

The extra columns reinforce the different spray qualities between different series, but also give the ability to make a rough spray plan for managing real life spraving conditions.

Spray % <141µ: % of total spray that can be considered driftable fines. In ideal conditions, it would be reasonable to assume this spray is NOT going where you want it to go. Due to evaporation before absorption, off-target spray or inversion, very small droplets will not likely hit target. Ideally have a spray tip that minimizes driftable fines, BUT ensure you maintain an acceptable level of coverage.

As speed, wind conditions & boom height increase, observed spray drift will increase substantially.

Spray % <600µ: % of total spray that can be considered small droplets. As % of these useful droplets lowers, coverage is reduced.

Consider it the 'other half' of the spray application, focusing on small droplets for coverage. Whereas you should maintain a low %<141µ, try to keep a %<600μ as high as possible, to maintain better coverage. As a very rough guideline with some usually chemical applications, aim for ~80+% <600μ for systemic applications; or ~90+% <600µ for contact applications; provided drift reduction levels are met and are satisfactory.

VMD (µ): The volumetric median diameter is the middle-point of spray distribution, and can be used to estimate between different series of the same size spray tips (tested on the same laboratory equipment). It is not for comparing between brands of tips. If you are familiar with using a VMD in tip searches, you can use it as an intensive filter to further focus in on tips that might work for your application. For example, if you are happy with spray application with the MR110-04 at ~3.5bar (346µ VMD), the spray quality might be comparable to an SR110-06 at ~3.5bar (337µ VMD). Bear in mind, VMD is used for educational purposes only, and should not dictate application.

For more Guides, Videos & Reading on proper nozzle selection, visit www.wilger.net

We aim to have all sorts of ways to help make the best educated decision in picking and using spray tips, so if there is something you find would be helpful, don't hesitate to reach out and ask. Often, we cannot provide EVERYTHING there is to know in our guides, as it can be overwhelming, so if you are wanting to get more information from an expert, contact WILGER.

Picking Spray Tips for Pulse Width Modulation (PWM) Sprayers

NOTE: PWM Spray systems differ in some respects (max flow capacity, pulse frequency (Hz), and other general variations in operation. This guide is a general guide that applies to most PWM spray systems, but for clarification would be based on a 10Hz solenoid, with a relative max flow capacity of 1.5 us gpm (this determines the relative pressure drop). Wilger does not own, produce, or have any ownership of PWM spray systems. All rights reserved by their owners.

O STEP 1: Size Your Tip Since the application rate must be consistent, selecting a tip sized to the required rate over the actual sprayer speed range is critical. It is recommended to use Tip Wizard, as it will adjust the chart specifically for any application rate.

Since PWM sprayers have control of sprayer pressure, a PWM sprayer will typically allow for a wider selection of tip sizes.

FOCUS ON: SPEED, PRESSURE & DUTY CYCLE (DC%) for a required APPLICATION RATE

Speed, pressure and respective duty cycle dictate a spray tip's ability to match a rate, and we must ensure our typical travel speed follows a reasonable pressure range. Having duty cycles <50% can degrade spray quality and consistency of spray swath, so it is always recommended to be above that. Try to pick a size that allows a duty cycle of 60-80% at your typical sprayer speed, allowing sufficient speed up/down. If a nozzle is approaching 90-100% at your maximum sprayer speed at your highest pressures, this can be a good indication that a nozzle is sufficiently sized.

Before you look at any coverage/spray quality characteristics of a nozzle, you should have solidified which nozzle SIZE will work best first.

🕗 STEP 2: Filter to Your Spray Quality Each chemical will require a nozzle spray quality (for labels that do not, consult chemical representative or agronomist, or general guide based on mode of action), since you have selected your tip size (e.g. 110-04) you can now find the best option within the series available in that nozzle size. The ER/SR/MR/DR/UR series differ based on spray quality & drift reduction.

FOCUS ON: 'ASARE \$572' SPRAY CLASSIFICATION

Since the pressure is dictating the spray quality, you'll want to filter out any tip series that cannot apply the recommended spray quality. Since PWM gives full control of sprayer pressure, this will usually filter the results to 1-2 nozzles within a size or series.

STEP 3: Pick your most flexible spray nozzle It is worthwhile to review extra information provided for the spray tip, and re-evaluate if necessary. While the extra information in extrapolated from lab conditions without active ingredients, and cannot be considered actual, but it does lend to paint a picture of differences between series.

The goal is to select a nozzle that can be applied at relatively moderate pressures (e.g. 3.5-4bar) when spray conditions are ideal, giving a means to reduce pressure to 2-3bar to have a 'drift reduction mode' that can be called upon when less ideal conditions arrive.

[ADVANCED] FOCUS ON: Spray % <141μ, Spray % <600μ, VMD (μ)

The extra columns reinforce the different spray qualities between different series, but also give the ability to make a rough spray plan for managing real life spraying conditions.

Spray % <141µ: % of total spray that can be considered driftable fines. In ideal conditions, it would be reasonable to assume this spray is NOT going where you want it to go. Due to evaporation before absorption, off-target spray or inversion, very small droplets will not likely hit target. Ideally have a spray tip that minimizes driftable fines, BUT ensure you maintain an acceptable level of coverage.

As speed, wind conditions & boom height increase, observed spray drift will increase substantially. With wind speeds of 19kph+, it can be expect to have driftable fine spray double. Windy conditions, higher drift sensitivity, and other environmental reasons are serious considerations for what might be an acceptable level of driftable fines.

By general chemical mode of action, you might have a reference point for % driftable fines, which might be generalized as:

Systemic Herbicides: Try maintain driftable fines <10%. (For very sensitive applications and herbicides, the requirement might go down to even 1.5-5%) Contact Herbicides & Fungicides: Try maintain driftable fines <15%. This allows for a consistent and high level of coverage without losing a great deal to driftable fines. It is often part of a good balance between driftable fines and coverage.

Spray % <600µ: % of total spray that can be considered small droplets. As % of these useful droplets lowers, coverage is reduced. Consider it the 'other half' of the spray application, focusing on small droplets for coverage. Whereas you should maintain a low %<141µ, try to keep a %<600μ as high as possible, to maintain better coverage. As a very rough guideline with some usually chemical applications, aim for ~80+% <600μ for systemic applications; or ~90+% <600µ for contact applications; provided drift reduction levels are met and are satisfactory.

VMD (µ): The volumetric median diameter is the middle-point of spray distribution, and can be used to estimate between different series of the same size spray tips (tested on the same laboratory equipment). It is not for comparing between brands of tips. If you are familiar with using a VMD in tip searches, you can use it as an intensive filter to further focus in on tips that might work for your application. For example, if you are happy with spray application with the MR110-04 at ~3.5bar (346µ VMD), the spray quality might be comparable to an SR110-06 at ~3.5bar (337µ VMD). Bear in mind, VMD is used for educational purposes only, and should not dictate application.

Quick-Start Example: 100 L/Ha @ 16 kph max, on 50cm spacing, with a PWM Spray System, applying SYSTEMIC HERBICIDE (glyphosate)

STEP 1: SIZE THE NOZZLE: Focus on Pressure/Speed Range/Duty Cycle (Try maintain ~60-80% duty cycle through full speed/pressure range)

For the best option for a tip size, we'll focus on the 110-04 size. (110-05 would also be a good nozzle size, but 110-06 starts getting too large for optimal PWM system use) It would apply 100L/Ha, 16kph anywhere between 2.2-4bar, allowing more than enough room into turn situations if turn compensation is available.

STEP 2: QUALIFY THE SPRAY

Since the chemical label for glyphosate requires a 'even coverage of **ASABE COARSE droplets**'. we will notice the ER110-04 is too fine, the SR fits at only lower pressures, the MR fits well, and the DR/UR being perhaps too coarse. We could also use a VMD of 350-400µ to filter out more. Note: The DR & UR series are coarser than required, but might be suitable for applicators who have to apply into more drift-sensitive areas.

For this example, we will single out the MR110-04 as our best tip to maintain a healthy flexibility to reduce spray drift on the go.

STEP 3: DOUBLE CHECK MR110-04 for max flexibility betw 'IDEAL SPRAYING MODE' & 'DRIFT REDUCTION MODE'

Further considerations: Given the high level of coverage at higher pr this same nozzle could be used for contact herbicides and fungicides to cover more applications.

nearing nexionity to reduce spray with on the go.	1.5	3.2-12.9	>100	XC	469µ
STEP 3: DOUBLE CHECK MR110-04 for max flexibility between	2	3.7-14.9	>100	vc	429µ
'IDEAL SPRAYING MODE' & 'DRIFT REDUCTION MODE'	2.5	4.2-16.7	96	VC	399µ
Ideal Condition Spraying @ 16kph: Drift Sensitive Spraying @ 16kph:	3	4.6-18.3	87	С	374µ
@3.5bar: DUTY CYCLE: 81% Excellent @2.5bar: DUTY CYCLE: 96% OK	3.5	4.9-19.7	81	C	353µ
@3.5bar: COARSE Spray Class @2.5bar: VERY COARSE Spray Class	3.3	5.3-21.1	76	C	335µ
@3.5bar % < 141µ: ~8%	4				
	4.5	5.6-22.4	72	С	319µ
Further considerations: Given the high level of coverage at higher pressures (4bar+),	5	5.9-23.6	68	С	304μ

Combo-Jet® MR110-04

creen No: 50 Mesh (#40250-00)

2%

6%

8%

9%

10%

☆

74%

82%

87%

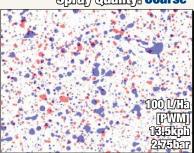
90%

92%

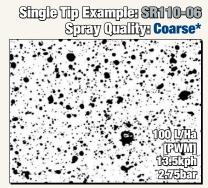
93%

94%

Picking Nozzles for Double Nozzle Spraying


Picking two spray tips isn't much different than a single tip. Since the sprayer has some means of adjust the flow to match a flow rate, simply pick a nozzle size that would supply the full rate, and then split it into parts that would provide the same flow rate. E.g. If a 110-10 nozzle size is required for an application, suitable pairs would be like a '110-06 + 110-05' or '110-05', as the cumulative size would apply the same rate as a single 110-10. Limit the size difference to two nozzle sizes to ensure consistent back pressure between both nozzles. (e.g. 110-08 +110-02 would not be ideal as the -08 might steal flow from the -02). ALWAYS enter the cumulative size of nozzles into the controller. Not just one of the nozzles. (e.g. if a 110-04 + 110-06 were used, a -10 size nozzle would be entered)

1 STEP 1: Size Your Tip Since the application rate must be consistent, selecting a tip sized to the required rate over the actual sprayer speed range is critical. It is recommended to use Tip Wizard, as it will adjust the chart specifically for any application rate, not just common pairs of rate & speed.


FOCUS ON: SPEED & PRESSURE for a required APPLICATION RATE

- *FOR PWM SPRAYERS (DUTY CYCLE): Since you have more control of your pressure, your sprayer will typically allow for a wider selection of tip size.

 Try to pick a size that allows a duty cycle of 60-80% at your typical sprayer speed, allowing sufficient speed up/down.
- 2 STEP 2: Filter to Your Spray Quality Each chemical will require a nozzle spray quality (for labels that do not, consult chemical representative or agronomist, or general guide based on mode of action), since you have selected your tip size (e.g. 110-04) you can now find the best option within the series available in that nozzle size. The ER/SR/MR/DR/UR series differ based on spray quality & drift reduction.

| Temply 2x SR110-03 | Spay Quality Coarse* | 100 Wild | [PWil] | 1865ph | 275bar

*IMPORTANT: FOR PWM SPRAYERS (Pressure-drop through solenoid): Depending on the solenoid used, for larger nozzle sizes (or paired nozzle sizes) there will be greater pressure drop. So, when considering spray quality for the smaller nozzles in a pair, verify the pressure drop for the cumulative size as it will differ from the nozzles individually. With the pressure drop factor, cross-reference the spray quality of the smaller nozzles in the pair for their more realistic spray quality (after pressure drop). ALWAYS enter the joint nozzle size in the controller.

STEP 3: Double Check Just like the 'Quick-start guide to picking spray tips', refer to the extra information to qualify nozzles to ensure they will suit your application. Since the pair of nozzles are spraying a fraction of the total weight, there is some synergy between having one as a finer nozzle and the other coarser to produce a more meaningful mix of spray droplet sizes to get where they need to go.

[ADVANCED] FOCUS ON: Spray % <141µ, Spray % <600µ, VMD (µ)

The extra columns reinforce the different spray qualities between different series, but also give the ability to make a rough spray plan for managing real life spraying conditions.

Spray % <141µ: % of total spray that can be considered driftable fines. If one nozzle is producing more driftable fines than the other, but when averaging based on the flow, you'd want to ensure you are still at a tolerable driftable fines % given the application.

As speed, wind conditions & boom height increase, observed spray drift will increase substantially. This is especially the case with forward/backward facing

Spray % <600µ: % of total spray that can be considered small droplets. As % of these useful droplets lowers, coverage is reduced.

Since you are splitting a single 'large' nozzle into two smaller nozzles, you should take advantage of getting a much higher %<600µ than possible with a single nozzle.

VMD (µ): As VMD is the middle point in the distribution of spray, and a pair of nozzles will have a blended VMD when both are considered, simply qualify a tip based on acceptable spray quality first, and take note of the two nozzles and

EXAMPLE: 220 L/ha Glufosinate (Contact Herbicide), on 50cm spacing, traveling 16 kph, using a PWM spray system

STEP 1: Using Tip Wizard (or nozzle charts), a 110-125 nozzle size would suffice for travel speed and pressure range. The ER110-125 is shown as an example. With this 110-125 nozzle size, we know a nozzle pair adding to a ~110-125 would be suitable for the application rate. (e.g 110-06 + 110-06) Either use the TIP WIZARD double-down function, or split the search into two parts that add up to the total application rate required (220L/ha)- e.g. 2x 110L/Ha. There is additional pressure drop through a solenoid, so keep that in mind when selecting nozzles as the spray quality will differ from nozzles operating separately.

STEP 2: By chemical label, Glufosinate is to be applied as a ASABE medium spray quality or coarser. Qualify spray nozzles suitable for chemical label requirement. Remember, if you cannot find a spray quality in the chart or in tip wizard, you will have to widen your spray quality search or split to a double down configuration that can provide closer to the ideal spray quality.

Example Result:

=	Combo-Je Part No: 402 Screen No: 1	81-125	Color: Te	sl		☆		
Pres	Speed Range	DC @ 16 km/h	Class	VMD	<141	<600		
bar	km/h	%		μ	%	%		
1.25	3.4-13.5	>100	xc	476μ	6%	56%		
1.5	3.7-14.8	>100	xc	460µ	7%	61%		
2	4.3-17.1	94	XC	433µ	8%	67%		
2.5	4.8-19.1	84	XC	412µ	9%	71%		
3	5.2-21.0	76	XC	396µ	10%	74%		
3.5	5.7-22.7	71	XC	381µ	10%	77%		
4	6.1-24.2	66	VC	369µ	11%	79%		
4.5	6.4-25.7	62	VC	358µ	11%	80%		
5	6.8-27.1	59	С	348µ	12%	81%		

_	Combo-Je Part No: 402 Screen No: N	87-06 0	Color: Grey			COI	иво	Combo-Je Part No: 402 Screen No: N	87-06	Color: Grey	9		☆
Pres	Speed Range	DC @ 16 km/h	Class	VMD	<141	<600	Pres	Speed Range	DC @ 16 km/h	Class	VMD	<141	<600
bar	km/h	%		μ	%	%	bar	km/h	%		μ	%	%
1.5	3.6-14.5	>100	xc	539µ	1%	56%	1.5	3.6-14.5	>100	xc	539µ	1%	56%
2	4.2-16.7	96	xc	494µ	2%	69%	2	4.2-16.7	96	xc	494µ	2%	69%
2.5	4.7-18.7	86	VC	460µ	4%	77%	2.5	4.7-18.7	86	VC	460µ	4%	77%
3	5.1-20.4	78	VC	431µ	5%	82%	3	5.1-20.4	78	VC	431µ	5%	82%
3.5	5.5-22.1	73	VC	407µ	6%	85%	3.5	5.5-22.1	73	VC	407µ	6%	85%
4	5.9-23.6	68	С	387µ	8%	87%	4	5.9-23.6	68	С	387µ	8%	87%
4.5	6.3-25.0	64	С	368µ	9%	89%	4.5	6.3-25.0	64	С	368µ	9%	89%
5	6.6-26.4	61	С	352µ	9%	90%	5	6.6-26.4	61	С	352µ	9%	90%

STEP 3: Qualify nozzle pair based on spray quality, and pick based on most suitable % driftable fines (ideally <15% <141 μ) and % coverage factor (ideally near or greater than 90% <600 μ)

Example Result:

Double-Down SR110-06 would provide upwards of 9%+ more volume made of small droplets (%<600µ), while nominally decreasing driftable fines (%<141µ) especially at lower pressures.

The spray quality is within the 'coarse' spray quality, just outside MEDIUM spray quality. An ER110-06 series could be replaced for one of the SR110-06 to provide a mix of even finer spray into the dual nozzle setup.

Total nozzle flow would be the same as a 110-12, which would be nominally smaller than a 110-125.

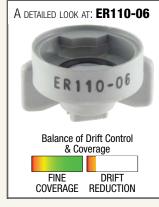
COMBO-JET ER80° & ER110° Series Spray Tips

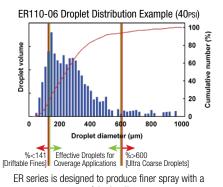
The ER series spray tip is a conventional flat fan nozzle, emphasizing consistent spray pattern with relatively fine spray. All ER nozzles are manufactured with a stainless steel tip.

Longer Lasting Stainless Tips

Less **Plugged Nozzles**

Perfect for PWM Sprayers


Consistent Pattern at Lower pres.


Acid

Nozzles

consistent pattern.

COMBO-JET® ER80° ASABE S572.1 Spray Quality Chart

Pressure (bar)	1.5	1.75	2	2.5	3	3.5	4	4.5	5	5.5	6
ER80-01	F	F	F	F	F	F	F	F	F	F	F
ER80-015	F	F	F	F	F	F	F	F	F	F	F
ER80-02	F	F	F	F	F	F	F	F	F	F	F
ER80-025	M	M	F	F	F	F	F	F	F	F	F
ER80-03	M	M	F	F	F	F	F	F	F	F	F
ER80-04	M	M	M	M	F	F	F	F	F	F	F
ER80-05	С	C	M	M	M	M	M	M	F	F	F
ER80-06	C	C	C	C	C	M	M	M	M	M	M
ER80-08	VC										
ER80-10	XC	XC	XC	C	C	C	М	M	M	F	F
ER80-125		XC	XC	VC	C	C	C	C	C	M	M
ER80-15		XC	XC	XC	C	C	C	M	M	M	M
ER80-20		UC	XC	XC	XC	VC	C	C	C	C	M
ER80-25		UC	XC	XC	XC	VC	C	C	C	C	M
ER80-30		UC	UC	XC	XC	XC	XC	XC	VC	VC	C
ER80-40				XC	XC	XC	XC	XC	XC	VC	VC
ER80-50				XC	XC	XC	XC	XC	XC	VC	VC
ER80-60				XC	XC	XC	XC	XC	XC	VC	VC

COMBO-JET® ER110° ASABE S572.1 Spray Quality Chart

Pressure (bar)	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
ER110-01	F	F	F	F	F	F	F	F	F	F
ER110-015	F	F	F	F	F	F	F	F	F	F
ER110-02	F	Щ	Щ	Щ	F	Щ	F	I.	F	F
ER110-025	F	Щ	Щ	Щ	F	Щ	F	I.	F	F
ER110-03	F	Щ	Щ	Щ	F	Щ	F	II.	F	F
ER110-04	M	M	M	Щ	F	Щ	F	II.	F	F
ER110-05	M	M	M	Щ	F	Щ	F	II.	F	F
ER110-06	C	M	M	M	M	M	F	II.	F	F
ER110-08	C	С	M	M	M	M	F	II.	Щ	Ŧ
ER110-10	C	С	С	С	M	M	M	M	Щ	F
ER110-125	XC	XC	XC	VC	C	С	С	C	С	C
ER110-15	XC	XC	XC	VC	C	С	С	С	С	C
ER110-20	UC	XC	XC	XC	XC	XC	VC	VC	C	C
ER110-25	UC	XC	XC	XC	XC	XC	VC	VC	C	C
ER110-30	UC	XC	XC	XC	XC	XC	XC	XC	VC	VC

COMBO-JET® ER Series Specifications

Approved for PWM Spray Systems
Compatible with all PWM Spray systems/Hz.

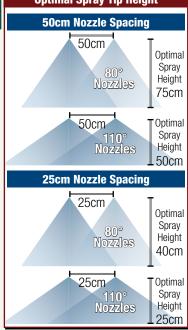
Operating Pressure 1.5-7 bar

Flat Fan Nozzle Type Conventional Flat Fan

Nozzle Materials Spray Tip: Stainless Steel O-ring: FKM, 13mm x 3mm #40260-00 (viton avail.) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)


Spray quality is categorized based on Dv0.1 and VMD droplet sizes. Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Chart shown includes spray quality at lested data points as well as extraondated data points. extrapolated data points.

Fine (F) Medium (M) Coarse (C)

■ Very Coarse (VC)
□ Extremely Coarse (XC)
■ Ultra Coarse (UC)

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malverr

Optimal Spray Tip Height

COMBO-JET SR80° & SR110° Series Spray Tips

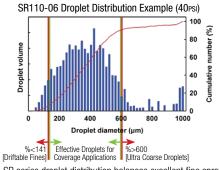
The SR series spray tip is a closed-chamber, pre-orifice drift reduction nozzle, emphasizing a first stage of drift reduction. The SR series balances excellent coverage spray with significant drift reduction upwards of 50%+.

Longer Lasting Stainless Tips

Perfect

for PWM

Sprayers


Less

Plugged Nozzles

A DETAILED LOOK AT: **SR110-06** SR110-0 Consistent Pattern at Lower pres.

Balance of Drift Control & Coverage

FINE DRIFT COVERAGE REDUCTION

SR series droplet distribution balances excellent fine spray coverage while reducing driftable fines.

> **COMBO-JET® SR Series Specifications** Approved for PWM Spray Systems Compatible with all PWM Spray systems/Hz. Operating Pressure 1.75-7 bar Flat Fan Nozzle Type Closed-Chamber, Pre-Orifice Drift Reduction Nozzle Materials Spray Tip: Stainless Stee O-ring: FKM, 13mm x 3mm #40260-00 (viton avail.) Cap: Glass-reinforced Polypropylene ASABE Spray Classification

Solid Mass **Spray Droplets**

Acid Resistant **Nozzles**

COMBO-JET® SR80° ASABE S572.1 Spray Quality Chart

Pressure (bar)	1.75	2	2.5	3	3.5	4	4.5	5	5.5	6
SR80-01	M	M	F	F	F	F	F	F	F	F
SR80-015	C	M	M	M	F	F	F	F	F	F
SR80-02	C	M	M	M	F	F	F	F	F	F
SR80-025	С	С	C	M	M	M	M	M	F	F
SR80-03	C	С	C	С	С	М	M	M	M	M
SR80-04	С	С	С	C	С	С	M	M	M	M
SR80-05	VC	С	С	C	С	С	С	С	M	M
SR80-06	VC	VC	VC	C	С	С	С	С	C	С
SR80-08	UC	UC	XC	XC	XC	XC	VC	VC	C	С
SR80-10	UC	UC	UC	XC	XC	XC	XC	XC	VC	VC
SR80-125	UC	UC	UC	XC	XC	XC	XC	XC	VC	VC
SR80-15	UC	UC	UC	UC	UC	XC	XC	XC	XC	XC
SR80-20	UC	UC	UC	UC	UC	XC	XC	XC	XC	XC
SR80-25	UC	UC	UC	XC	XC	XC	XC	XC	XC	XC
SR80-30	-	UC	UC	UC	XC	XC	XC	XC	XC	XC

(ASABE S572.1 Standard)

Spray quality is categorized based on Dv0.1 and VMD droplet sizes. Objective 3rd party testing data, from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Chart shown includes spray quality at tested data points as well as extrapolated data points.

Fine (F) Medium (M) Coarse (C)

Very Coarse (VC) Extremely Coarse (XC)
Ultra Coarse (UC)

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malvern.

Optimal Spray Tip Height

COMBO-JET® SR110° ASABE S572.1 Spray Quality Chart

Pressure (bar)	1.75	2	2.5	3	3.5	4	4.5	5	5.5	6
SR110-015	M	M	F	F	F	F	F	F	F	F
SR110-02	M	M	F	F	F	F	F	F	F	F
SR110-025	M	M	M	M	F	F	F	F	F	F
SR110-03	C	C	C	C	M	M	M	M	F	F
SR110-04	C	C	C	C	M	M	M	M	M	M
SR110-05	VC	C	C	С	С	С	M	M	M	M
SR110-06	XC	VC	C	С	С	С	C	C	M	M
SR110-08	UC	XC	XC	XC	VC	C	C	C	C	С
SR110-10	UC	XC	XC	XC	XC	VC	C	C	C	С
SR110-125	UC	UC	XC	XC	XC	XC	VC	C	C	C
SR110-15	UC	UC	UC	UC	XC	XC	XC	XC	XC	XC
SR110-20	UC	UC	UC	XC	XC	XC	XC	XC	XC	VC
SR110-25	UC	UC	UC	XC	XC	XC	XC	XC	XC	VC

50cm 75cr 40 cm Heigh 50cm 50cm Tip

LERAP Ratings for SR Series As of January 2021

☆☆☆75% ☆☆50% 1.0-1.5BAR

For the updated list of nozzles, visit www.wilger.net/LERAP More information on LERAP certification, process, and the most up to date

listing of approved nozzles and their ratings, is available from the Health and Safety Executive (HSE), also available online @

https://secure.pesticides.gov.uk/SprayEquipment

COMBO-JET® SR Pre-orifices - by nozzle size [Replacement Only for SR series]

S	R Size	-01	-015	-02	-025	-03	-04	-05	-06	-08	-10	-125	-15	-20	-25	-30
	SR80°	40285-015	40285-02	40285-025	40285-03	40285-03	40285-06	40285-06	40285-08	40285-10	40285-125	40285-20	40285-20	40285-25	40285-40	40285-40
	SR110°	-	40285-02	40285-025	40285-04	40285-04	40285-06	40285-06	40285-08S	40285-08S	40285-10S	40285-13S	40285-20	40285-25	40285-40	-

COMBO-JET MR80° & MR110° Series Spray Tips

The MR series spray tip is a closed-chamber, pre-orifice drift reduction nozzle, emphasizing a second stage of drift reduction. The MR series balances great coverage spray with significant drift reduction upwards of 75%+.

Longer Lasting Stainless Tips

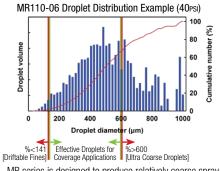
Perfect

for PWM

Sprayers

Superior Drift Reduction

Consistent Pattern at Lower pres.



Acid Resistant **Nozzles**

FINE DRIFT COVERAGE REDUCTION

MR series is designed to produce relatively coarse spray with minimal drift.

COMBO-JET® MR80° ASABE S572.1 Spray Quality Chart

Pressure (bar)	2	2.5	3	3.5	4	4.5	5	5.5	6
MR80-005	M	M	F	F	F	F	F	F	F
MR80-0067	M	F	F	F	ш	ш	ш	F	F
MR80-01	M	F	F	F	Œ.	Æ	IL.	F	F
MR80-015	C	C	C	M	M	M	M	F	F
MR80-02	C	С	С	C	M	M	M	M	M
MR80-025	VC	VC	C	С	С	С	С	С	C
MR80-03	VC	VC	C	С	С	С	С	С	C
MR80-04	VC	С	C	C	С	С	С	C	C
MR80-05	XC	XC	VC	VC	VC	C	C	C	C
MR80-06	XC	XC	XC	VC	VC	VC	VC	C	C
MR80-08	UC	UC	UC	XC	XC	XC	VC	VC	C
MR80-10	UC	UC	UC	UC	XC	XC	XC	XC	XC
MR80-125	UC	UC	UC	UC	UC	UC	XC	XC	XC
MR80-15	UC	UC	XC	XC	XC	XC	VC	VC	C
MR80-20	UC	UC	UC	UC	XC	XC	XC	XC	XC
MR80-25	UC	UC	UC	UC	UC	UC	UC	UC	XC
MR80-30	UC	UC	UC	UC	UC	UC	UC	UC	XC
MR80-40	-	UC	UC	UC	UC	XC	XC	XC	XC
COMRO_ IET®	MR1	10° A	CARE	9572) 1 Cr	ray N	huality	, Cha	rt

COMBO-JET® MK110° ASABE S572.1 Spray Quality Chart

Pressure (bar)	2	2.5	3	3.5	4	4.5	5	5.5	6
MR110-015	C	C	M	M	M	F	F	F	F
MR110-02	C	C	M	M	M	M	F	L	F
MR110-025	C	C	С	C	C	M	M	M	M
MR110-03	VC	C	С	C	C	C	C	C	M
MR110-04	VC	C	С	C	C	C	C	C	M
MR110-05	XC	VC	VC	VC	C	C	C	C	С
MR110-06	XC	XC	XC	VC	VC	VC	VC	C	С
MR110-08	UC	UC	XC	XC	XC	XC	XC	VC	C
MR110-10	UC	UC	XC	XC	XC	XC	XC	VC	C
MR110-125	UC	UC	UC	UC	UC	UC	UC	XC	XC
MR110-15	UC	UC	UC	UC	UC	UC	UC	UC	UC
MR110-20	UC	UC	UC	UC	UC	UC	UC	XC	XC

COMBO-JET® MR Pre-orifices - by size [Replacement Only]

					_	7		7									
-005	-0067	-01	-015	-02	-025	-03	-04	-05	-06	-08	-10	-125	-15	-20	-25	-30	-40
40285-005	40285-007	40285-01	40285-015	40285-02	40285-025	40285-03	40285-04	40285-05	40285-06	40285-08		40285-125		40285-20	40285-25	40285-30	40285-40

COMBO-JET® MR Series Specifications

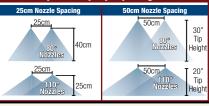
Approved for PWM Spray Systems Compatible with all PWM Spray systems/Hz.

Operating Pressure 2-7 bar

Flat Fan Nozzle Type Closed-Chamber, Pre-Orifice Drift Reduction

Nozzle Materials Spray Tip: Stainless Steel Repl. O-ring: FKM, 13mm x 3mm #40260-00 (viton avail) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification


(ASABE S572.1 Standard)
Spray quality is categorized based on Dv0.1 and VMD droplet sizes.
Objective 3rd party testing data, from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Chart shown includes spray quality at tested data points as well as extrapolated data points.

Fine (F) Medium (M) Coarse (C)

■ Very Coarse (VC)
□ Extremely Coarse (XC)
■ Ultra Coarse (UC)

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malvern.

Optimal Spray Tip Height

	LERAP Ratings for MR Series As of January 2021
MR110-04	★★★ 75% ★★ 50% 1.0-2.5bar 2.6-3.5bar
MR110-05	☆☆☆ 90% ☆☆☆ 75% 1.0-1.5bar 1.6-5.0bar
MR110-06	☆☆☆ 90% ☆☆☆ 75% 1.0-1.5bar 1.6-5.0bar

For the updated list of nozzles, visit www.wilger.net/LERAP

More information on LERAP certification, process, and the most up to date listing of approved nozzles and their ratings, is available from the Health and Safety Executive (HSE), also available online @

https://secure.pesticides.gov.uk/SprayEquipment

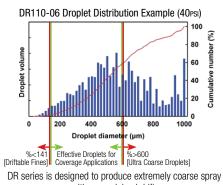
JKI Nozzle Ratings for MRs

COMBO-JET DR80° & DR110° Series Spray Tips

The DR series spray tip is a closed-chamber, pre-orifice drift reduction nozzle, emphasizing a third stage of drift reduction. The DR series balances good coverage spray with extremely low driftable fines, upwards of a 90% reduction in driftable fines.

Longer Lasting Stainless Tips

Superior Drift Reduction


Consistent Pattern at Lower pres.

with very minimal drift.

COMBO-JET® DR80° ASABE S572.1 Spray Quality Chart

Pressure (bar)	2	2.5	3	3.5	4	4.5	5	5.5	6
DR80-005	C	M	M	F	I.	F	L.	F	E
DR80-0067	C	C	M	M	M	F	Щ	F	F
DR80-01	C	C	M	M	M	M	щ	F	ш
DR80-015	VC	VC	C	C	C	C	C	C	С
DR80-02	XC	VC	VC	VC	C	C	C	C	C
DR80-025	XC	VC	VC	VC	С	C	С	C	С
DR80-03	XC	XC	VC	VC	VC	C	С	C	С
DR80-04	XC	XC	XC	XC	XC	VC	VC	C	С
DR80-05	XC	XC	XC	XC	XC	XC	VC	VC	VC
DR80-06	XC	XC	XC	XC	XC	XC	XC	XC	VC
DR80-08	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-10	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-125	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-15	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-20	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-25	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-30	UC	UC	UC	UC	UC	UC	UC	UC	XC

COMBO-JET® DR110° ASABE S572.1 Spray Quality Chart

Pressure (bar)	2	2.5	3	3.5	4	4.5	5	5.5	6
DR110-015	C	C	C	C	С	C	M	M	M
DR110-02	VC	VC	C	C	С	C	С	C	C
DR110-025	VC	VC	C	C	С	C	С	C	C
DR110-03	XC	XC	VC	VC	C	C	С	C	C
DR110-04	XC	XC	VC	VC	VC	C	С	C	C
DR110-05	XC	XC	XC	XC	XC	XC	VC	VC	VC
DR110-06	XC	XC	XC	XC	XC	XC	XC	VC	VC
DR110-08	UC	UC	UC	UC	UC	UC	XC	XC	XC
DR110-10	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR110-125	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR110-15	UC	UC	UC	UC	UC	UC	UC	UC	UC

COMBO-JET® DR Pre-orifices - by tip size [Replacement Only]

-005	-0067	-01	-015	-02	-025	-03	-04	-05	-06	-08	-10	-125	-15	-20	-25	-30
40285-005	40285-007	40285-01	40285-015	40285-02	40285-025	40285-03	40285-04	40285-05	40285-06	40285-08	40285-10	40285-125	40285-15	40285-20	40285-25	40285-30

COMBO-JET® DR Series Specifications

Approved for PWM Spray Systems Compatible with all PWM Spray systems/Hz.

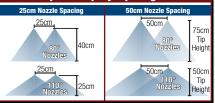
> Operating Pressure 2-7 bar

Flat Fan Nozzle Type Closed-Chamber, Pre-Orifice Drift Reduction

Spray Tip: Stainless Steel Repl. O-ring: FKM, 13mm x 3mm #40260-00 (viton avail) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)


Spray quality is categorized based on Dv0.1 and VMD droplet sizes.
Objective 3rd party testing data, from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Chart shown includes spray quality at tested data points as well as extrapolated data points.

Fine (F) Medium (M) Coarse (C)

Very Coarse (VC) Extremely Coarse (XC)
Ultra Coarse (UC)

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malvern.

Optimal Spray Tip Height

LERAP Ratings for DR Series As of January 2021
☆☆☆ 75% ☆☆ 50% 1.0-2.5bar 2.6-3.5bar
☆☆☆☆90% ☆☆☆75% ☆☆50% 1.0-1.5bar 1.6-2.5bar 2.6-3.5bar
☆☆☆ 75% 1.0-5.0bar
☆☆☆ 90% ☆☆☆ 75% 1.0-1.5Bar 1.6-5.0Bar
☆☆☆ 90% ☆☆☆ 75% 1.0-3.0Bar 3.1-5.0Bar

More information on LERAP certification, and the most up to date listing of tested nozzles, visit https://secure.pesticides.gov.uk/SprayEquipment

JKI Nozzle Ratings for DR Series
Visit www.wilger.net for updated charts

;	-10	-125	-15	-20	-25	-30
-08		40285-125	40285-15	40285-20	40285-25	40285-30

COMBO-JET UR110° Series* Spray Tips

*ILS Patent No. 10 603 681

The UR series spray tip is a dual-chamber, pre-orifice drift reduction nozzle, emphasizing the coarsest stage of drift reduction. The UR series is heavily suited to ultra-low driftable fines, emphasizing drift reduction over coverage.

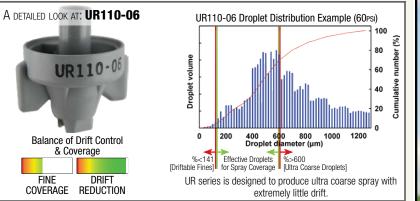
Approved for Dicamba Mixes

Perfect

for PWM

Sprayers

Ultra Low Spray


Drift

Longer Lasting Stainless **Tips**

Acid Resistant **Nozzles**

COMBO-JET® UR110° ASABE S572.1 Spray Quality Chart

Pressure (bar)	2.5	3	3.5	4	4.5	5	5.5	6
UR110-025	UC	UC	UC	XC	XC	XC	XC	XC
UR110-03	UC	UC	UC	XC	XC	XC	XC	XC
UR110-04	UC	UC	UC	UC	UC	UC	UC	UC
UR110-05	UC	UC	UC	UC	UC	UC	UC	UC
UR110-06	UC	UC	UC	UC	UC	UC	UC	UC
UR110-08	UC	UC	UC	UC	UC	UC	UC	UC
UR110-10	UC	UC	UC	UC	UC	UC	UC	UC

COMBO-JET® UR Series* Pre-orifice Sets [Replacement only]

UR two-piece pre-orifices must be replaced with a new pair only. Correct orifices must be used for proper performance.											
-025	5 -03 -04 -05 -06 -08 -10										
40292-22 40292-23 40292-24 40292-25 40292-26 40292-28 40292-30											

		ngs for UR nuary 2021	Series
UR110-04		75% 2.0-3.0bar Ref. G-2184	50% 4.0-6.0bar Ref. G-2184
UR110-05	90% 2.0bar Ref. G-2185	75% 3.0-6.0bar Ref. G-2185	
UR110-06	90% 2.0-3.0bar Ref. G-2189	75% 4.0-6.0bar Ref. G-2189	

Optimal Spra	ay Tip Height
25cm Nozzle Spacing	50cm Nozzle Spacing
25cm	50cm
80°	30°
Nozzlas	Nozzzlas
25cm	50cm
110°	110°
Nozzles 25cm	Nozziles 50cm

COMBO-JET® UR Series Specifications

Approved for PWM Spray Systems
Compatible with all PWM Spray systems/Hz.

Operating Pressure 2.5-7 bar

Flat Fan Nozzle Type Dual Closed-Chamber, Pre-Orifice Drift Reduction

Nozzle Materials

Spray Tip: Stainless Steel Repl. O-ring: FKM, 13mm x 3mm #40260-00 (viton avail) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)
Spray quality is categorized based on Dv0.1 and VMD droplet sizes.
Objective 3rd party testing data, from spray spectrum recording
equipment (without wind tunnel use), has been used to classify spray
quality for this chart. Chart shown includes spray quality at tested data points as well as extrapolated data points

Fine (F) Coarse (C)

Very Coarse (VC) Extremely Coarse (XC) Ultra Coarse (UC) UR Nozzles verified on Malvern.

COMBO-JET® Snap-in Strainers - What size(s) and when?

Wilger manufactures snap-in strainers that can be used to protect a spray nozzle and keep it spraying instead of getting plugged by residues or debris. They snap in to any COMBO-JET cap^{UR} or metering orifice so the cap handles as one piece.

		, ,	,
Nozzle Size	100 Mesh	50 Mesh	16/25 Mesh
-01 or smaller	X		
-015	X		
-02	X	X	
-025		X	
-03		X	
-04		X	
-05		X	X
-06		X	X
-08 or larger	Nozzle st generally n		Х

^{UR}Strainers not compatible with UR series due to stacked pre-orifice

Stainless Steel Strainers Snap-in Stainless Steel Mesh 100 Mesh Strainer for Chemical **Spraying**

40250-00

40251-00

Slotted Strainers

Snap-in Plastic Slotted Strainer for **Fertilizer** metering or streaming

40249-00

Mesh Size Slotted Strainer Stainless Mesh Color 100 mesh #40251-00 Green 50 mesh 40249-00 #40250-00 Blue 40248-00 25 mesh Yellow 40247-00 Gray 16 mesh

COMBO-JET 80° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

Nozzle Size &	Flow Rate L/	Boom			in Litres/He zzle Spacing				Classi Serie		ı, VIVII		olet Size Series		%<1		rift %); ° Serie		υμ (S		roplets ° Serie	
Angle	min	BAR	@	Sprayer Sp	peed in km/	/h	Class	VMD	<141	<600		VMD	<141	<600		VMD	<141	<600		VMD	<141	<(
	Flow	Boom			on 50cm sp								#4028									
	L/min 0.140	BAR 1.50	20L/Ha 8.4	30L/Ha 5.6	40L/Ha 4.2	50L/Ha 3.4	Class	VMD 163		100%	Class	VIVID	<141	<600	Class	VIVID	<141	<600	Class	VIVID	<141	<
	0.151	1.75	9.0	6.0	4.5	3.6	Ė	156		100%					М	258	16%	100%	С	308	17%	10
80	0.161	2.00	10	6.4	4.8	3.9	F	150	45%						М	240		100%		282	12%	
-005	0.180	2.50	11	7.2	5.4	4.3	F	141		100%					F	212		100%		245	17%	10
ozzles	0.197	3.00	12	7.9	5.9	4.7	F	133	58%	100%					F	192		100%		218	22%	10
	0.213	3.50	13	8.5	6.4	5.1	F	127							F	177		100%	F	198	26%	10
	0.228	4.00 4.50	14 15	9.1 10	6.8 7.3	5.5 5.8	F	122 118	67%	100%					F	164 154		100% 100%	-	181 168	30%	10
	0.255	5.00	15	10	7.6	6.1	F	115	74%	100%					F	145		100%		157	36%	
	0.267	5.50	16	11	8.0	6.4	VF	112	77%						F	138		100%		148	38%	
	0.279	6.00	17	11	8.4	6.7	VF	109	80%	100%					F	131		100%	F	140	41%	
	Flow	Boom			on 50cm sp								#40288					0-0067				
	L/min	BAR	20L/Ha	30L/Ha	40L/Ha	50L/Ha	Class	VMD		<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<
	0.187	1.50 1.75	11 12	7.5 8.1	5.6 6.1	4.5 4.8	F	193 182	29%	100%					М	230	18%	100%	С	334	13%	10
80	0.216	2.00	13	8.6	6.5	5.2	Ė	173		100%					F	214		100%		313	11%	
0067	0.241	2.50	14	10	7.2	5.8	F	159	41%	100%					F	191	30%	100%		280	12%	10
ozzles	0.265	3.00	16	11	7.9	6.3	F	148							F	174	36%	100%		256	15%	10
	0.286	3.50	17	11	8.6	6.9	F	140	53%	100%					F	161		100%		237	17%	10
	0.305	4.00	18	12	9.2	7.3	F	133		100%					F	150		100%		222	19%	10
	0.324	4.50 5.00	19 20	13 14	10 10	7.8 8.2	F	127 122	61%	100% 100%					F	141 134	49% 52%	100% 100%		209 199	21% 23%	10
	0.341	5.50	21	14	11	8.6	F	118		100%					F	127		100%	F	199	24%	
	0.374	6.00	22	15	11	9.0	F	114		100%					F	122		100%	F	182	26%	
	Flow	Boom			on 50cm sp			0-01		70-01	SR8	30-01	#4028			30-01	#402			0-01	#402	
	L/min	BAR	20L/Ha	30L/Ha	40L/Ha	50L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<
	0.279 0.302	1.50 1.75	17 18	11 12	8.4 9.0	6.7 7.2	F	171 164	31% 36%	100%		279 256	11% 15%	97% 97%					H			-
80	0.302	2.00	19	13	10	7.7	F	158	40%	100% 100%		238	19%	97%	М	222	22%	97%	С	316	9%	9
-01	0.360	2.50	22	14	11	8.6	Ė	148				210	26%	97%	F	200	28%	97%		286	12%	9
ozzles	0.395	3.00	24	16	12	10	F	140	52%	100%		190	32%	97%	F	184	32%	97%	М	264	15%	9
	0.426	3.50	26	17	13	10	F	134	57%			174	36%	98%	F	172	36%	97%	М	247	17%	9
	0.456	4.00	27	18	14	11	F	129	61%	100%		162	40%	98%	F	161	40%	97%	M	233	19%	9
	0.484	4.50	29	19	15	12	F	124	64%	100%		151	44%	98%	F	153	43%	97%	M	221	20%	10
	0.510	5.00	31	20	15	12	F	121	67%	100%		143	47%	98%	F	146	45%	97%	F	211	22%	10
	0.535 0.558	5.50 6.00	32 34	21 22	16 17	13 13	F	117 115	73%	100% 100%		135 129	50% 53%	98% 98%	F	139 134	48% 50%	97% 96%	F	202 194	23% 24%	
	Flow	Boom			on 50cm sp		_	0-015		70-015					MR8		#4029		DR8			
	L/min	BAR	35L/Ha	50L/Ha	60L/Ha	75L/Ha	Class			<600		VMD		<600		VMD		<600			<141	
	0.419	1.50	14	10	8.4	6.7	F	195	22%	100%												
	0.452	1.75	16	11	9.0	7.2	F	187				284	13%	94%								L
80	0.484	2.00	17	12	10	7.7	F	181		100%		267	16%	95%	C	328	10%	94%	VC	422	4%	8
-015	0.541	2.50	19	13	11	8.6	F	171	32%	100%		240	20%	96%	С	296	13%	96%		392	5%	8
ozzles	0.592 0.640	3.00 3.50	20 22	14 15	12 13	10	F	163 157	39%	100% 100%		221 206	24% 27%	96% 97%	C M	273 254	15% 17%	97% 98%		369 351	6% 7%	9
	0.684	4.00	23	16	14	11	Ė	152	42%	100%		194	29%	97%	M	239	19%	98%		336	8%	9
	0.725	4.50	25	17	15	12	F	147	44%	100%		183	32%	98%	M	227	21%	98%	Č	323	8%	9,
	0.765	5.00	26	18	15	12	F	144	46%			175	34%	98%	M	216	22%	99%		312	9%	9
	0.802	5.50	27	19	16	13	F	140	48%	100%		167	36%	98%	F	207	23%	99%	С	303	10%	9
	0.838	6.00	29	20	17	13	F	137		100%		160	37%	98%	F	199	25%	99%	С	294	10%	9
	Flow L/min	Boom BAR	Sprayer S 40L/Ha	Speed (L/Ha 50L/Ha	on 50cm sp		Class	30-02		70-02		30-02		88-02		30-02 VMD		90-02		0-02	#402	
	0.558		40L/na 17	13	60L/Ha 11	70L/Ha 10	F	VMD 181	<141 29%	<600 100%	Class	VMD	<141	<000	Oldoo	VMD	<141	<600	Class	VMD	<141	<
	0.603		18	14	12	10	F	176		100%		272	13%	94%					М			t
80	0.645		19	15	13	11	F	172		100%			15%	95%	С	329	8%	94%	XC	459	3%	8
-02	0.721	2.50	22	17	14	12	F	164	37%	100%	M	241	19%	96%	С	307	10%	94%	VC	431	4%	8
ozzles	0.790		24	19	16	14	F	159		100%		227	22%	97%	C	290	12%	94%		410	5%	8
	0.853		26	20	17	15	F	154		100%		215		97%	C	276	14%	95%	VC	392	5%	8
	0.912		27	22	18 19	16 17	F	150		100%		206	27%	97%	M	265	15%	95% 95%		378	6%	8
	0.967 1.019		29 31	23 24	20	17	F	147 144		100%		198 191	29% 30%	98% 98%	M	255 247	17% 18%	95%		366 355	6% 7%	9
	1.069		32	26	21	18	F	142		100%		185	32%	98%	M	239	19%	95%	C	346	7%	9
	1.117		34	27	22	19	F	139	50%	100%	F	179	33%	98%	М	233	20%	96%	С	338	8%	9
		Boom			on 50cm sp			0-025	#4027	70-025	SR8	0-025	#4028	8-025		0-025	#4029	0-025	DR8	0-025	#4028	BO-
	L/min	BAR	50L/Ha	60L/Ha	70L/Ha	80L/Ha	Class			<600		VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<
	0.698 0.754		17 18	14 15	12	10	M	227 218		100%		314	9%	91%								H
80	0.754		19	16	14	12	F	211		100%		299	11%	92%	VC	430	4%	80%	ΧC	463	3%	7
025	0.901	2.50	22	18	15	14	F	199		100%		277	14%	94%	VC	396	6%	83%		440	4%	8
ozzles	0.987	3.00	24	20	17	15	F	189		100%		260	16%	95%	C	371	7%	86%		421	5%	8
	1.066	3.50	26	21	18	16	F	182		100%		247	18%	95%	С	351	8%	87%	VC	406	5%	8
	1.140	4.00	27	23	20	17	F	175	34%	100%	M	236	20%	96%	С	334	9%	88%	С	394	6%	8
	1.209	4.50	29	24	21	18	F	170	36%	100%	M	226	21%	96%	С	320	10%	89%		383	6%	8
																						10
	1.274 1.336	5.00	31 32	25 27	22	19	F	165 161	37% 39%	100% 99%	M F	218 211	23% 24%	97% 97%	C	308 298	10% 11%	90% 91%		373 365	7% 7%	8

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. Shown application information is based on water @ 26.5°C in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 80° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

ASABE Spray Classification (ASABE S572.1 Standard)

Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data by 3rd partyl, from parsy spectrum recording equipment (without wind tunned use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.), can vary the coarse (C)

Extremely Coarse (XC)

Ultra Coarse (UC)

Ultra Coarse (UC)

VMD (Volume Median Diameter) The median droplet (in μ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141μ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially.

% of volume which is made up of 'small' droplets, useful for coverage As % of useful droplets lowers. overall coverage is reduced.

o 110-06 verified	ed on Phase Do	ppler Partic	nu is provided as e Analyzer (PDPA); tij	all educational re is sized over 110-06	verified on Malvern.	Ultra Coa			h	alf made	up of	droplets	larger.	d	rift will	increas	e substa	ntially.	┸	overal	l coveraç	ge is
	Flow L/min	Boom BAR	Sprayer: 60L/Ha	Speed (L/Ha 75L/Ha	on 50cm sp 100L/Ha	acing) @ 120L/Ha		80-03 VMD		70-03 <600												
	0.838	1.50	17	13	10	8.4	M	229	18%	99%					Oldoo	711.5		1000	Oldoo	71115		
	0.905		18	14	11	9.0	M	221	20%	99%		366	7%	88%								
80	0.967	2.00	19	15	12	9.7	F	215	22%	99%	C	349	9%	89%	VC	437	4%	80%		485	3%	7
-03	1.081	2.50	22	17	13	11	F	205	25%	99%	C	321	11%	90%	VC	404	6%	84%		458	4%	75
lozzles	1.184	3.00	24	19	14	12	F	197	27%	99%	C	300	13%	91%	C	378	7%	86%		437	5%	78
	1.279	3.50	26	20	15	13	F	191	29%	99%	C	283	15%	92%	C	358	8%	88%		420	5%	80
	1.368 1.451	4.00 4.50	27 29	22	16 17	14 15	F	186 181	31% 33%	99%	M	269 258	16% 18%	93% 93%	C	341 327	9% 10%	89% 90%		406 394	6% 6%	8
	1.529	5.00	31	24	18	15	F	177	34%	99%	M	248	19%	93%	C	315	10%	91%	C	384	7%	8
	1.604	5.50	32	26	19	16	Ė	174	35%	99%	M	239	20%	94%	C	304	11%	92%		374	7%	8
	1.675	6.00	34	27	20	17	F	170	36%	99%	M	232	21%	94%	C	295	12%	92%	C	366	8%	8
	Flow	Boom			on 50cm sp			80-04		70-04		30-04		88-04		80-04		90-04		30-04	#402	
	L/min	BAR	75L/Ha	100L/Ha	125L/Ha	150L/Ha	Class	VMD	<141	<600	Class		<141	<600	Class			<600		VMD		<(
	1.12	1.50	18	13	11	8.9	М	246	17%	99%												
	1.21	1.75	19	14	12	9.6	M	238	19%	99%	С	368	5%	86%								
80	1.29	2.00	21	15	12	10	M	232	20%	99%	С	352	7%	87%	VC	424	5%	80%	XC	547	2%	6
-04	1.44	2.50	23	17	14	12	M	221	23%	99%	С	327	9%	88%	С	397	7%	83%	XC	519	3%	6
Nozzles	1.58	3.00	25	19	15	13	F	212	25%	99%	С	306	11%	90%	С	376	8%	85%		497	3%	7
	1.71	3.50	27	20	16	14	F	205	26%	99%	С	289	12%	91%	С	359	9%	86%		479	4%	7:
	1.82	4.00	29	22	18	15	F	200	28%	99%	С	274	13%	91%	С	345	10%	87%		463	4%	7:
	1.93	4.50	31	23	19	15	F	195	29%	99%	M	260	14%	92%	C	333	11%	88%	VC	451	5%	7
	2.04	5.00	33	24	20	16	F	190	30%	99%	M	248	15%	93%	C	322	11%	89%		439	5%	7
	2.14	5.50	34	26	21	17	F	187	31%	99%	M	238	16%	93%	C	313	12%	90%	C	429	5%	7
	2.23	6.00	36	27	21	18	F	183	32%	99%	M	228	17%	93%	C	305	13%	91%		421	5%	8
	Flow	Boom			on 50cm sp			80-05		70-05		30-05		88-05		80-05		90-05		30-05	#402	
	L/min	BAR	100L/Ha	125L/Ha	150L/Ha	175L/Ha	Class		<141		Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<
	1.40 1.51	1.50 1.75	17 18	13 14	11 12	9.6	C	290 279	12% 14%	95% 95%	VC	409	5%	81%			-					-
80	1.61	2.00	19	15	13	11	M	269	16%	95%	C	391	7%	82%	XC	508	3%	67%	XC	579	2%	5
-05	1.80	2.50	22	17	14	12	M	254	19%	95%	C	362	9%	85%	XC	478	4%	71%		550	2%	6
Nozzles	1.97	3.00	24	19	16	14	M	243	21%	95%	C	338	11%	86%	VC	455	5%	75%		528	3%	6
14022100	2.13	3.50	26	20	17	15	M	234	23%	95%	Č	318	12%	88%	VC	436	5%	77%		510	3%	6
	2.28	4.00	27	22	18	16	M	226	24%	95%	Č	300	13%	89%	VC	421	6%	79%		495	3%	69
	2.42	4.50	29	23	19	17	M	219	26%	95%	Č	285	14%	89%	C	407	6%	81%		482	4%	7
	2.55	5.00	31	24	20	17	F	214	27%	95%	Č	271	15%	90%	Č	396	7%	82%	VC	471	4%	7:
	2.67	5.50	32	26	21	18	F	208	28%	95%	M	259	16%	91%	C	386	7%	83%	VC	461	4%	7
	2.79	6.00	34	27	22	19	F	204	29%	95%	M	247	17%	91%	С	376	7%	84%	VC	452	4%	7
	Flow	Boom	Sprayer	Speed (L/Ha	on 50cm sp	acing) @	ER	80-06	#402	70-06	SR8	30-06	#402	88-06	MR	80-06	#402	90-06	DR8	30-06	#402	80-
	L/min	BAR	125L/Ha	150L/Ha	175L/Ha	200L/Ha	Class		<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<(
	1.68	1.50	16	13	11	10	С	316	13%	92%												
	1.81	1.75	17	14	12	11	C	307	15%	91%	VC	438	4%	78%								L
80	1.93	2.00	19	15	13	12	C	298	16%	91%	VC	423	5%	80%	XC	530	2%	63%		600	1%	5
-06	2.16	2.50	21	17	15	13	C	285	19%	91%	VC	400	6%	83%	XC	504	3%	68%		575	2%	55
Nozzles	2.37	3.00	23	19	16	14	С	275	21%	91%	C	381	7%	85%	XC	483	4%	71%		555	2%	58
	2.56	3.50	25	20	18	15	M	266	22%	90%	C	367	8%	86%	VC	466	4%	74%	XC	538	2%	6
	2.74	4.00 4.50	26 28	22	19 20	16 17	M	259	24%	90%	C	354	9%	88%	VC VC	452 440	5%	76%	XC	524	3%	6
	3.06	5.00	29	24	21	18	M	253 247	25% 26%	90%	C	344 334	9%	89% 89%	VC	429	5%	77% 79%		512 502	3%	68
	3.21	5.50	31	26	22	19	M	243	27%	90%	C	326	10%	90%	C	429	6%	80%		492	3%	68
	3.35	6.00	32	27	23	20	M	238	28%	89%	C	319	11%	91%	C	411	6%	81%	VC	484	4%	6
	Flow	Boom			on 50cm sr			80-08		70-08		30-08		88-08		80-08		90-08		30-08	#402	
	L/min	BAR		200L/Ha	250L/Ha	300L/Ha	Class		<141					<600				<600		VMD	<141	
	2.23	1.50	18	13	11	8.9	VC		13%	87%			3411	1000	0.000			1000	10.000		7.11	
	2.41	1.75	19	14	12	9.6	C	336	15%	89%	UC	514	7%	54%								
80	2.58	2.00	21	15	12	10	C	321	17%	90%			7%	58%		545		63%	UC	623	3%	5
-08	2.88	2.50	23	17	14	12	M		19%					64%	UC	513		67%			4%	5
Nozzles	3.16	3.00	25	19	15	13	M	277	22%	93%	XC	437	10%	68%	UC	488	8%	71%		575	4%	5
	3.41	3.50	27	20	16	14	F	262	24%	94%	XC	414	10%	71%	XC	468	9%	73%	UC	557	5%	6
	3.65	4.00	29	22	18	15	F	250	25%	95%	XC	395	11%	73%	XC	452	10%	75%		543	5%	6
	3.87	4.50	31	23	19	15	F	239	27%		VC	378		75%	XC	438	11%	77%		530	5%	6
	4.08	5.00	33	24	20	16	F	231	28%		VC	363		77%	VC	426	11%	79%		519	6%	6
	4.28	5.50	34	26	21	17	F	223	29%		C	350	13%	78%	VC C	415	12%	80%	UC	509	6%	6
		6.00	36	27	21	18	F	216	30%		C	337	13%	80%		405	12%	81%	UC	500	6%	7
	4.47	Boom			on 50cm sp		EK	80-10		70-10	SR	30-10		88-10	IVIR	80-10		90-10	DR	30-10	#402	_
	Flow	DAD	200L/Ha	250L/Ha 13	300L/Ha	350L/Ha	VO	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<
	Flow L/min	BAR	17	1.3	11	9.6 10	XC	446	9%	79%	IIC-	EOE	60/	500/								H
	Flow L/min 2.79	1.50	17		10		XC	426 409	11% 12%	80% 81%			6%	50%	IIC	550	5%	62%	IIC	615	4%	E
90	Flow L/min 2.79 3.02	1.50 1.75	18	14	12				1/7/0	10170	UU	516	6%	54%				11/7/0	UC	OID	1 470	5
80	Flow L/min 2.79 3.02 3.22	1.50 1.75 2.00	18 19	14 15	13	11	XC		120/	020/	LIC		70/	600/	LIC	E24						I F
-10	Flow L/min 2.79 3.02 3.22 3.60	1.50 1.75 2.00 2.50	18 19 22	14 15 17	13 14	11 12	С	382	13%	83%		485	7%	60%	UC	524	6%	66%	UC	592	5%	
-10	Flow L/min 2.79 3.02 3.22 3.60 3.95	1.50 1.75 2.00 2.50 3.00	18 19 22 24	14 15 17 19	13 14 16	11 12 14	C C	382 361	13% 15%	83% 85%	XC	485 460	8%	65%	UC	524 504	6% 6%	66% 68%	UC	592 574	5% 5%	5
-10	Flow L/min 2.79 3.02 3.22 3.60 3.95 4.26	1.50 1.75 2.00 2.50 3.00 3.50	18 19 22 24 26	14 15 17 19 20	13 14 16 17	11 12 14 15	C C	382 361 345	13% 15% 16%	83% 85% 86%	XC	485 460 439	8% 9%	65% 68%	UC	524 504 487	6% 6% 7%	66% 68% 70%	UC UC UC	592 574 560	5% 5% 6%	5 6
	Flow L/min 2.79 3.02 3.22 3.60 3.95 4.26 4.56	1.50 1.75 2.00 2.50 3.00 3.50 4.00	18 19 22 24 26 27	14 15 17 19 20 22	13 14 16 17 18	11 12 14 15 16	C C C	382 361 345 331	13% 15% 16% 17%	83% 85% 86% 87%	XC XC	485 460 439 420	8% 9% 9%	65% 68% 70%	UC UC XC	524 504 487 473	6% 6% 7% 7%	66% 68% 70% 72%	UC UC UC	592 574 560 547	5% 5% 6% 6%	5 6 6
-10	Flow L/min 2.79 3.02 3.22 3.60 3.95 4.26 4.56 4.84	1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50	18 19 22 24 26 27 29	14 15 17 19 20 22 23	13 14 16 17 18 19	11 12 14 15 16 17	C C C M	382 361 345 331 319	13% 15% 16% 17% 18%	83% 85% 86% 87% 88%	XC XC XC XC	485 460 439 420 404	8% 9% 9% 10%	65% 68% 70% 72%	UC UC XC XC	524 504 487 473 461	6% 6% 7% 7% 8%	66% 68% 70% 72% 73%	UC UC UC UC	592 574 560 547 536	5% 5% 6% 6% 7%	5 6 6
-10	Flow L/min 2.79 3.02 3.22 3.60 3.95 4.26 4.56	1.50 1.75 2.00 2.50 3.00 3.50 4.00	18 19 22 24 26 27	14 15 17 19 20 22	13 14 16 17 18	11 12 14 15 16	C C C	382 361 345 331	13% 15% 16% 17%	83% 85% 86% 87% 88% 88%	XC XC XC XC	485 460 439 420	8% 9% 9%	65% 68% 70%	UC UC XC XC XC	524 504 487 473	6% 6% 7% 7%	66% 68% 70% 72%	UC UC UC UC UC	592 574 560 547	5% 5% 6% 6%	56 66 66 66 66

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. Shown application information is based on water @ 26.5°C in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 80° Spray Tips - Standard Sprayer Systems

	Flow L/min	Boom BAR	Sprayer S 250L/Ha	Speed (L/Ha 300L/Ha	on 50cm sp 350L/Ha	acing) @ 400L/Ha	ER8 Class	0-125 VMD	#4027 <141	'0-125 <600			#4028 <141	8-125 <600	MR8 Class			90-12 <u>5</u> <600	DR8 Class	0-125 VMD	#4028 <141	<600
	3.77	1.75	18	15	13	11	XC	431	10%	79%	UC		6%	51%	Oldoo	VIVID	\ T	\000	Oldoo	VIVID	\ T	\000
	4.03	2.00	19	16	14	12	XC	416	11%	80%		513	7%	54%		588	5%	55%	UC	628	4%	49%
80	4.51	2.50	22	18	15	14	VC	393	12%	82%		486	8%	59%	UC	566	6%	59%	UC	605	4%	53%
-125 Nozzles	4.94 5.33	3.00	24 26	20 21	17 18	15 16	C	375 360	13%	84% 85%		464 446	8% 9%	62% 65%	UC	548 534	7% 7%	61% 63%	UC	587 572	5% 5%	55% 57%
	5.70	4.00	27	23	20	17	С	348	15%	86%	XC	429	10%	67%	UC	522	8%	65%	UC	560	6%	59%
	6.04	4.50	29	24	21	18	C	337	16%	87%		415	10%	69%	UC	511	8%	67%	UC	549	6%	61%
	6.37	5.00 5.50	31 32	25 27	22 23	19 20	M	328 320	16% 17%	88% 88%		403 391	11% 11%	71% 72%	XC	502 493	8% 9%	68% 69%	UC	539 531	6% 6%	62% 63%
	6.98	6.00	34	28	24	21	M	313	17%	89%		381	12%	73%	XC	486	9%	70%	UC	523	7%	64%
	Flow	Boom		Speed (L/Ha			ER8	30-15	#402	70-15	SR	30-15		88-15	MR		#402	90-15	DR	30-15	#4028	
	4.52	1.75	300L/Ha 18	400L/Ha 14	450L/Ha 12	500L/Ha	XC	VMD 432	9%	<600 78%	UC	VMD 574	<141 5%	<600 44%	Ulass	VMD	<141	<600	Class	VMD	<141	<600
	4.84	2.00	19	15	13	12	XC	416	10%	79%	UC	558	6%	47%	UC	517	7%	66%	UC	641	3%	47%
80	5.41	2.50	22	16	14	13	XC	390	12%	80%	UC	531	6%	51%	UC	491	8%	69%	UC	616	3%	51%
-15 Nozzles	5.92 6.40	3.00	24 26	18 19	16 17	14 15	C	370 354	13%	81% 82%		509 491	6% 7%	55% 58%	XC	471 455	9% 10%	71% 73%	UC	596 580	3% 4%	54% 57%
14022163	6.84	4.00	27	21	18	16	C	340	15%	83%		475	7%	60%	XC	441	10%	75%	UC	566	4%	59%
	7.25	4.50	29	22	19	17	M	329	16%	84%		460	7%	62%	XC	429	11%	76%	UC	554	4%	61%
	7.65 8.02	5.00 5.50	31 32	23	20 21	18 19	M	319 310	17% 18%	84% 85%		448	8% 8%	64% 65%	VC VC	419 410	11% 12%	77% 78%	UC	544 534	5% 5%	62% 63%
	8.38	6.00	34	25	22	20	M	302	18%	85%		426	8%	67%	C	402	12%	79%	UC	526	5%	64%
	Flow	Boom		Speed (L/Ha		acing) @	ER8	30-20	#402	70-20	SR	30-20	#402	88-20	MR	80-20	#402	90-20	DR8	30-20	#4028	80-20
	6.03	1.75	400L/Ha 18	500L/Ha 14	600L/Ha 12	700L/Ha 10	Class	<u>VMD</u> 481	<141 8%	<600 71%	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
	6.45	2.00	19	15	13	11	XC	464	9%	73%	UC	555	5%	47%								
80	7.21	2.50	22	17	14	12	XC	438	10%	75%	UC	527	6%	52%	UC		6%	62%	UC	601	3%	54%
-20 Nozzles	7.90 8.53	3.00	24 26	19 20	16 17	14 15	VC	418 402	11% 12%	77% 79%		504 485	6% 7%	56% 59%	UC	512 492	6% 7%	65% 68%	UC	575 554	4% 4%	58% 61%
INUZZIES	9.12	4.00	27	22	18	16	C	388	13%	80%		468	7%	61%		476	8%	70%	UC	537	5%	63%
	9.67	4.50	29	23	19	17	С	376	13%	81%	XC	453	7%	63%	XC	461	8%	72%	UC	522	5%	65%
	10.19 10.69		31	24	20 21	17	C	366	14%	82%		440 428	7%	65%	XC	449	8%	73%	UC	509	5%	67%
	11.17		32 34	26 27	22	18 19	M	357 349	15% 15%	83% 84%		417	8% 8%	66% 67%	XC	438 428	9%	74% 75%	UC	498 488	5% 6%	68% 69%
	Flow	Boom	Sprayer S	Speed (L/Ha		acing) @	ER8	30-25	#402	70-25	SR	30-25	#402	88-25	MR	80-25	#402	90-25	DR	30-25	#4028	80-25
	L/min 7.54	BAR 1.75	500L/Ha 18	600L/Ha 15	700L/Ha 13	800L/Ha 11	Class UC	VMD 483	<141 9%	<600 71%	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
	8.06	2.00	19	16	14	12	XC	466	9%	72%	UC	515	5%	53%								
80	9.01	2.50	22	18	15	14	XC	439	11%	74%	UC	490	6%	57%	UC		4%	58%	UC	630	3%	50%
-25	9.87	3.00	24	20	17	15	XC	418	12%	76%		470	7%	60%	UC	556	5%	61%	UC	605	3%	54%
Nozzles	10.66 11.40		26 27	21	18 20	16 17	VC C	401 387	13%	77% 78%	XC	453 438	7% 7%	62% 64%	UC	537 521	5% 5%	63% 65%	UC	585 567	3% 4%	57% 59%
	12.09	4.50	29	24	21	18	С	374	14%	79%	XC	425	8%	66%	UC	508	6%	67%	UC	553	4%	61%
	12.74		31 32	25 27	22	19 20	C C	364 355	15%	80% 81%	XC	413	8% 8%	67% 68%	UC	496	6% 6%	68% 69%	UC	540 528	4% 4%	63%
	13.36 13.96		34	28	24	21	M	347	15% 16%	81%		393	8%	69%	XC	486 477	6%	70%	UC	518	4%	64%
	Flow	Boom		Speed (L/Ha				30-30		70-30		30-30		88-30		80-30		90-30		30-30		80-30
	L/min 9.05	BAR 1.75	600L/Ha 18	700L/Ha 16	800L/Ha 14	900L/Ha 12	UC	VMD 504	5%	<600 67%	Class	VMD	<141	<600	Class	VIVID	<141	<600	Ulass	VMD	<141	<600
	9.67	2.00	19	17	15	13	UC	485	6%	69%			5%	53%								
80 -30	10.81 11.84		22 24	19 20	16 18	14 16	XC	456 434	7% 8%	71% 73%		485 464	5% 6%	57% 60%	UC	567 546	4% 5%	59% 62%	UC	616 581	2% 3%	52% 56%
Nozzles	12.79		26	22	19	17	XC	416	8%	75%		447	6%	62%	UC	528	5%	64%	UC	553	3%	60%
	13.68		27	23	21	18	XC	401	9%	76%		433	6%	64%	UC	514	5%	66%	UC	530	3%	62%
	14.51 15.29		29 31	25 26	22	19 20	VC	388 377	10%	77% 78%		421 410	7% 7%	66% 67%	UC	501 490	5% 6%	68% 69%	UC	511 494	3% 4%	65% 67%
	16.04		32	27	24	21	VC		11%					69%						479		
	16.75		34	29	25	22	C	358	11%	80%	XC	392	7%			471	6%	72%		466		70%
	Flow L/min	Boom BAR		Speed (L/Ha 1000L/Ha				30-40 VMD		70-40 <600				88-40 <600		80-40 VMD						
	14.42	2.50	22	17	14	12	XC	456	8%	71%	XC	477	5%	59%	UC	536	4%	61%				
00	15.79		24	19	15	13	XC	434	8%	73%			5%	61%		514	5%	64%				
80 -40	17.06 18.24		26 27	20	16 18	14 15	XC	416 402	9% 10%	75% 76%		444	6% 6%	63% 65%		496 481	5% 5%	66%	-			
Nozzles	19.34	4.50	29	23	19	15	XC	389	10%	77%	XC	420	6%	67%	XC	468	6%	69%				
	20.39		31	24	20	16	XC		11%	78%		411	6%	68%		456	6%	71%				
	21.38 22.33		32 34	26 27	21 21	17 18	VC	369 360	11%	79% 80%		402 395	7% 7%	69% 70%		446 437	6% 6%	72% 73%	-			
	Flow	Boom	Sprayer S	Speed (L/Ha	on 50cm sp	acing) @	ER8	30-50	#402	70-50			, .						,			
	L/min 18.02		1000L/Ha 22	1500L/Ha 14	1750L/Ha 12	2000L/Ha 11	Class XC		<141 7%	<600 70%												
	19.74		24	16	14	12	XC	440	8%	72%	1											
80	21.32	3.50	26	17	15	13	XC	423	8%	74%												
-50	22.79		27 29	18	16	14	XC	408 396	9%	75%	-											
Nozzles	24.18 25.48		31	19 20	17 17	15 15	XC	385	9%	76% 77%												
	26.73	5.50	32	21	18	16	VC	376	10%	78%												
	27.92 Flow	6.00 Boom	34 Sprayer S	22 Speed (L/Ha	19 on 50cm so	17 pacing) @	VC ER8	367 30-60		79% 70-60												
	L/min	BAR	1500L/Ha	2000L/Ha	2500L/Ha	3000L/Ha	Class	VMD	<141	<600												
	21.62		17	13 14	10 11	9	XC		8%	69%	-											
80	23.69 25.59		19 20	15	12	10 10	XC	436 421	9%	71% 72%												
-60	27.35	4.00	22	16	13	11	XC	408	10%	74%												
Nozzles	29.01		23	17	14	12	XC	397	10%	75%												
	30.58		24 26	18 19	15 15	12 13	XC VC	388	11%													

COMBO-JET 110° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE 5572.1 Standard)
Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.) can vary between testing equipment and method, and is provided as an educational resource only.

Fine (F)
Medium (M)
Coarse (C)
Very Coarse (VC)
Extremely Coarse (XC)
Ultra Coarse (UC)

VMD (Volume Median Diameter)
The median droplet (in µ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141μ (% Driftable Fines)
Percentage of volume which is
likely to drift. As wind & boom
height increase, observed spray
drift will increase substantially.

% <600μ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage. As % of useful droplets lowers, overall coverage is reduced.

					cational resource o ver 110-06 verified o				se (XC) C)	ha	alf mac	le up of	droplets	larger.	┚	drift will	increase	e substa	intially.	┚┖	overall	coveraç	e is red	duce
Nozzle	Flow	_	Annl	ication Rate	in Litres/He	ctare			Spray	Classi	ficatio	n: VMI	D (Dron	olet Siz	e in u	1): %<1	41μ (D	rift %)	: % <f< td=""><td>00u (9</td><td>Small D</td><td>roplets</td><td>)</td><td></td></f<>	00u (9	Small D	roplets)	
Size &	Rate	Boom BAR		on 50cm No	zzle Spacing	1)° Serie	S		SR110	° Serie	es		MR110	o° Serie	es		DR110	o° Serie	es	UR	
Angle	L/min	_			peed in km/						Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VN
	Flow L/min	Boom BAR	20L/Ha	30L/Ha	on 50cm sp 40L/Ha	50L/Ha	Class	10-01 VMD	#402 <141	<600														
	0.279	1.50	17	11	8.4	6.7	F	147		100%														
	0.302		18	12	9.0	7.2	F	143		100%														
110	0.322	2.00	19	13	10	7.7	F		51%															
-01 Nozzles	0.360	2.50 3.00	22 24	14	11	8.6 9.5	F	135	54%	100%									-					
14022163	0.426		26	17	13	10	F		60%															
	0.456		27	18	14	11	F		62%															
	0.484		29	19	15	12	F	122																
	0.510		31 32	20 21	15 16	12 13	F		65% 67%															
	0.535 0.558	6.00	34	22	17	13	F		68%															
	Flow	Boom			on 50cm sp		_				SR11	0-015	#4028	37-015	MR1	10-015	#4029	1-015	DR11	0-015	#4028	86-015		
	L/min	BAR	35L/Ha	50L/Ha	60L/Ha	75L/Ha	Class		<141		Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600		
	0.419 0.452	1.50	14 16	10	8.4 9.0	6.7 7.2	F	151	42%	100%														
110	0.452	2.00	17	11 12	10	7.7	F		46%		F	217	23%	98%	М	327	11%	94%	С	371	7%	91%		
-015	0.541	2.50	19	13	11	8.6	F	141		100%	F	205	27%	98%		291	14%	97%		340	9%	93%		
Nozzles	0.592	3.00	20	14	12	9.5	F	137		100%	F	195	30%	98%		266	17%	98%	M	318	11%			
	0.640 0.684	3.50 4.00	22 23	15 16	13 14	10 11	F	134 132	55% 58%	100% 100%	F	186 179	32% 34%	98% 98%	M F	245 229	20%	99%	M	299 284	12%	95% 96%		
	0.004	4.50	25 25	17	15	12	F		60%		F	173	36%	98%	F	215	24%			272		96%		
	0.765	5.00	26	18	15	12	F	127		100%	F	167	37%	98%	F	204		99%		261		97%		
	0.802	5.50	27	19	16	13	F		63%		F	162	39%	98%	F	194		100%		252		97%		
	0.838	6.00 Boom	29 Corover 9	20 Coood (I /Uo	17 on 50cm sc	13	F ER1	124 10-02		100% 81-02	F CD1	157 10-02	40%	98% 87-02	F MD1	186		100% 91-02		243		97% 86-02		
	Flow L/min	BAR	40L/Ha	50L/Ha	60L/Ha	70L/Ha	Class	VMD		<600	Class	VMD		<600				<600		VMD		<600		
	0.558		17	13	11	9.6	F		33%															
440	0.603		18	14	12	10	F		36%		_	000	000/	000/		000	440/	050/	1/0	400	40/	000/		
110 -02	0.645 0.721	2.50	19 22	15 17	13 14	11 12	F	161 154	43%	100%	F	220 210	22% 25%	99%		320 291	11% 14%			436 405	4% 6%	82% 86%		
Nozzles	0.790	3.00	24	19	16	14	F	148		100%	F	202	27%	99%		269		97%		380	7%	88%		
	0.853		26	20	17	15	F		49%			195	29%	99%		252		98%		359	8%	90%		
	0.912		27	22	18	16	F	139		100%	F	189	30%	99%		238	21%			341	9%	91%		
	0.967 1.019		29 31	23	19 20	17 17	F	132	54% 56%	100%	F	184 179	32% 33%	99%	F	227 217	22% 24%	98% 98%	M	325 310	10%			
	1.069		32	26	21	18	F		58%		F	175	34%	99%	F	208		99%		297	11%			
	1.117	6.00	34	27	22	19	F	126		100%		171	35%	99%		201		99%		286	12%			
	Flow L/min	Boom BAR	Sprayer S 50L/Ha	Speed (L/Ha 60L/Ha	on 50cm sp 70L/Ha	acing) @ 80L/Ha	Class	10-025 VMD		1-025 <600		0-025 VMD		37-025 -600			#4029 <141	1-025 -600		0-025 VMD		36-025 <600	UR1 [*] Class	
		1.50	17	14	12	10	F		29%		Ulass	VIVID	<141	<000	Ulass	VIVID	<141	<000	Ulass	VIVID	<141	<000	#402	
	0.754	1.75	18	15	13	11	F	189	29%	100%		244	18%	98%										
110	0.806	2.00	19	16	14	12	F		29%			237	19%	98%		354	8%	90%	VC	438	5%	79%	110	
-025 Nozzles	0.901 0.987	2.50 3.00	22 24	18 20	15 17	14 15	F		30%			227 218	22% 24%	98% 98%		330 311	10%	92% 94%	VC C	410 387	6% 7%	84% 87%	UC	55 52
MUZZICS	1.066	3.50	26	21	18	16	F		30%			211	25%	98%		295	14%			368	8%	90%	UC	50
	1.140	4.00	27	23	20	17	F	174	31%	100%	F	204	27%	98%	M	281	15%	96%	С	351	9%	91%	UC	48
	1.209	4.50	29	24	21	18	F	171		100%	F	199	28%	98%		268	16%		M	337	9%	92%	XC	46
	1.274 1.336	5.00 5.50	31 32	25 27	22	19 20	F	167	31%	100%	F	194 189	29% 30%	98% 98%		257 247		97% 97%		323 311	10%		XC	42
	1.396	6.00	34	28	24	21	F		31%			185	31%	98%		238		97%		301	11%		VC	41
	Flow	Boom			on 50cm sp							10-03					#402				#402		UR1	
	L/min 0.838	BAR 1 50	60L/Ha 17	75L/Ha 13		120L/Ha 8.4						VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class #402	
	0.905		18	14	11	9.0	F		29%			318	10%	94%									π4U2	-32
110	0.967	2.00	19	15	12	10	F	185	31%	100%	M	306	11%	95%	С	399	6%	86%	VC	484	3%	73%		
0.0	1.081		22	17	13	11	F		34%			287		96%		371	8%			455	4%	78%	UC	60
-03	1 1 2 2 /	3.00	24 26	19 20	14 15	12 13	F		36% 37%			272 258	16% 17%			350 331		91% 93%		432 412	5% 6%	82% 84%		57 54
		2 50						100	I JI /0	110070	IVI	(200)	ı I//0	0/10								04/0	UU	
	1.279						F	160						97%	M	315	111%	94%	C_	395	6%	86%	UC	52
	1.279 1.368 1.451	4.00 4.50	27 29	22 23	16 17	14 15	F	156	39% 40%	100% 100%	M M	247 237	19% 20%		M	315 301	12%	94% 95%	С	395 380	6% 7%	86% 88%	UC	52 50
	1.279 1.368	4.00 4.50 5.00	27	22	16	14		156 152	39%	100% 100% 100%	M M F	247 237 228	19%	97% 98%	M M		12% 13%		C				UC	

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. Shown application information is based on water @ 26.5°C in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 110° Spray Tips - Standard Sprayer Systems

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE S572.1 Standard)
Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.) can vary between testing equipment and method, and is growided as an educational resource only.

Fine (F)
Medium (M)
Coarse (C)
Very Coarse (VC)
Extremely Coarse (XC)
Ultra Coarse (UC)

VMD (Volume Median Diameter)
The median droplet (in µ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141µ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially. % <600μ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage. As % of useful droplets lowers, overall coverage is reduced.

s sized up to 110	0-06 verified o	n Phase Do	ppler Particle Analyze	r (PDPA); tips sized o	ver 110-06 verified o	n Malvern. Ult	ra C	oarse (U	C) .	na	iit mad	de up of	aropiets	ıarger.		arıtt will	increase	e substar	ntially.	┛┖	overall	coverag	je is reduced
	Flow	Boom	Sprayer	Speed (L/Ha	on 50cm sp	acing) @	ER	110-04	#4028	31-04	SR1	10-04	#4028	87-04	MR1	10-04	#402	91-04	DR1	10-04	#402	86-04	UR110-0
	L/min	BAR	75L/Ha	100L/Ha	125L/Ha			s VMD			Class												Class VM
	1.117	1.50		13	11	8.9	М			100%													#40292-
	1.206	1.75		14	12	9.6	M			100%		328	10%	93%									
110	1.289	2.00	21	15	12	10	M			100%		317	11%	94%		421	5%	84%		514	3%	68%	
-04	1.442	2.50		17	14	12	M			100%	M	297	13%	95%		390	6%	88%		483	4%	73%	
Nozzles	1.579 1.706	3.00		19 20	15 16	13 14	F	211		100% 100%	M M	281 267	14% 16%	95% 96%		365 344	7% 8%	90% 92%		458 436	4%	77% 80%	
	1.824	4.00		22	18	15	F	200		100%		256	17%	96%	M	326	9%	94%		417	5% 6%	82%	
-	1.934	4.50		23	19	15	Ė	196		100%		245	18%	97%	M	310		94%	C	400	6%	84%	
	2.039			24	20	16	Ė	192		100%	M	236	19%	97%	M	296		95%	Č	386	6%	85%	
	2.138			26	21	17	F	189		100%	F	228	20%		M	282		96%	Č	372	7%	87%	UC 49
	2.233			27	21	18	F	186	31%	100%	F	220	21%	97%	M	271	12%	96%	С	360	7%	87%	UC 48
	Flow	Boom		Speed (L/Ha	on 50cm sp			110-05	#4028	31-05				37-05				91-05			#402		UR110-0
	L/min	BAR	100L/Ha	125L/Ha	150L/Ha	175L/Ha		s VMD			Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	
	1.40			13	11	9.6	M				0	075	70/	000/									#40292-
110	1.51	1.75		14	12 13	10	M		21% 22%	95%		375	7%	89%	VC	401	20/	71%	VC	E22	2%	62%	
110 -05	1.61 1.80	2.00		15 17	14	11 12	M		25%	95% 95%	M	359 333	8% 10%	91% 93%		491 459	3% 4%	76%		533 512	3%	66%	UC 63
Nozzles	1.97	3.00		19	16	14	F	210	27%	95%	M	312	12%			432		80%		495	3%	69%	UC 61
14022103	2.13	3.50		20	17	15	F	202	28%	95%	M	294	13%	95%		410		82%		481	3%	72%	
	2.28	4.00		22	18	16	F	196	30%	95%	M	279	14%	96%		391	6%	84%		469	3%	74%	
	2.42	4.50		23	19	17	F	190	31%	95%	M	265	16%	96%		374	7%	86%	VC	457	4%	75%	UC 56
	2.55	5.00		24	20	17	F	185	32%	95%	M	253	17%	97%		359		87%	VC	448	4%	77%	UC 54
	2.67	5.50		26	21	18	F	180	33%	95%	M	242	17%	97%	С	345	8%	88%	VC	439	4%	78%	UC 53
	2.79	6.00		27	22	19	F	176	34%		F	232	18%		M	332	8%	89%	VC	431	4%	79%	UC 52
	Flow	Boom			on 50cm sp			110-06										91-06				86-06	UR110-0
	1.68	1.50		150L/Ha	175L/Ha 11	200L/Ha	Clas		<141 15%	<600 94%	Class	VMD	<141	<600	Class	VIVID	<141	<600	Class	VMD	<141	<000	Class VM #40292-
-	1.81	1.75		13	12	10 11	M		16%	94%	VC	442	5%	80%									#40292-
110	1.93	2.00		15	13	12	M		17%	94%	VC	421	6%	83%	XC	511	3%	67%	XC	569	2%	56%	
-06	2.16	2.50		17	15	13	M		19%	94%	C	386	8%	87%		485	4%	72%		541	2%	62%	UC 64
Nozzles	2.37	3.00		19	16	14	M		21%	95%	C	358	9%	90%		464	4%	76%		518	3%	65%	
	2.56	3.50	25	20	18	15	M	234	22%	95%	М	334	10%	92%	VC	447	4%	78%	VC	499	3%	68%	UC 60
	2.74	4.00		22	19	16	M		24%	95%	M	314	12%	93%		431	5%	80%		482	3%	71%	
	2.90	4.50		23	20	17	F	221	25%	95%	M	295	13%	94%		418			VC	468	3%	72%	
-	3.06	5.00		24	21	18	F	216	26%	95%	M	279	14%	95%		405	5%	84%		454	4%	74%	
-	3.21	5.50		26	22	19	F	211	27%	95%	M	264	14%	95%		394	6%	85%	VC	442	4%	75%	UC 54
	3.35	6.00		27 Coood // /Uo	23 on 50cm sp	20	F	206 110-08	27%	95% 31-08	CD1	251	15%	96%		384	6%	86% 91-08	VC	432	4%	77% 86-08	UC 53 UR110-0
	Flow L/min	Boom BAR				300L/Ha	Clas			<600				<600				<600				<600	
-	2.23	1.50		13	11	8.9	C		15%		Olass	VIVID	×141	<u> </u>	Oldoo	VIVID	\ 1 4 1	<u> </u>	Olass	VIVID	×141	<u> </u>	#40292-
	2.41	1.75		14	12	9.6	Č	305	16%	92%	VC	478	5%	61%									" TOLOL
110	2.58	2.00		15	12	10	C	293	17%		VC	458	6%	66%	XC	537	4%	52%	XC	620	3%	40%	
-08	2.88	2.50	23	17	14	12	M	273	19%	94%	VC	423	7%	72%	VC	499	5%	58%		585	3%	45%	UC 66
Nozzles	3.16	3.00		19	15	13	M		21%	95%	С	396	8%	76%		470	5%	63%		556	4%	49%	
	3.41	3.50		20	16	14	M		22%	95%	C	372	9%	79%		444	6%	67%		532	4%	52%	
-	3.65	4.00		22	18	15	M		23%		С	351	10%	81%		422	6%	70%		511	4%	54%	UC 59
-	3.87	4.50		23	19	15	F	220	24%	96%	M	333	10%	83%		402	7%			493	5%	56%	
	4.08	5.00 5.50		24 26	20	16 17	듣	211	25% 26%	97% 97%	M M	317 302	11% 11%	85% 86%		385 369	7% 8%	74% 76%	VC VC	476 461	5% 5%	58% 60%	UC 55 UC 54
	4.47	6.00		27	21	18	F	194	27%		M	289	12%	87%		355	8%	77%	VC	448	5%	61%	UC 53
	Flow	Boom				acing) @	_	110-10	#4028		SR1	10-10	#402		MR1	10-10	#402	91-10	DR1	10-10	#402	86-10	UR110-
	L/min	BAR	200L/Ha	250L/Ha	300L/Ha	350L/Ha	Clas	s VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class VIV
	2.79	1.50		13	11	9.6	С	354	11%	89%													#40292-
	3.02	1.75	18	14	12	10	C	340	12%	89%	VC	497	5%	57%									
110	3.22	2.00		15	13	11	C	328	14%	90%	VC	476	6%	61%		529	4%	52%		612	5%	59%	
-10	3.60	2.50		17	14	12	C	307		91%	VC	439	7%	68%				57%		593	5%	56%	
Nozzles	3.95			19	16	14	С		17%			410		72%						577		53%	
	4.26			20	17	15	M			93%	C	385	9%	76%				64%		564	6%	51%	
	4.56 4.84	4.00 4.50		22 23	18 19	16 17	M			93% 94%	C	363 344	9% 10%	78% 80%		418		69%		553 543	6% 6%	49% 47%	
	5.10	5.00		24	20	17	M			94%	M	327		82%		383		71%			6%	45%	
	5.35			26	21	18	F	234		94%	M	312		83%		368		72%			6%	43%	
	5.58			27	22	19	F		24%		M	298		84%		354		73%				42%	
	Flow	Boom	Sprayer	Speed (L/Ha	on 50cm sp	acing) @		10-125	#4028	1-125	SR11	10-125	#4028	7-125	MR1	10-125	#4029	1-125	DR11	10-125	#4028	6-125	
	L/min	BAR	250L/Ha	300L/Ha	350L/Ha	400L/Ha		s VMD			Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	
	3.77	1.75		15	13	11		413		71%													
	4.03	2.00		16	14	12	XC			74%			4%	57%	110	00-	40:	0000	V.C	C= :	60:	0.451	
		2.50		18	15	14	XC			76%	VC	476	5%	61%				38%		651	3%	34%	
110	4.51			20	17	15	VC				VC	439	6%	67%		587		44% 49%		626	4%	37%	
-125	4.51 4.94	3.00				10		240															
	4.51 4.94 5.33	3.00 3.50	26	21	18	16	C	349		81%	VC	409	6%	71%		558				607	4%	40%	
-125	4.51 4.94 5.33 5.70	3.00 3.50 4.00	26 27	21 23	18 20	17	C	335	12%	83%	С	383	7%	75%	XC	533	5%	52%	XC	590	4%	42%	
-125	4.51 4.94 5.33 5.70 6.04	3.00 3.50 4.00 4.50	26 27 29	21 23 24	18 20 21	17 18	C C	335 323	12% 13%	83% 84%	C	383 361	7% 7%	75% 77%	XC	533 511	5% 5%	52% 55%	XC	590 575	4% 5%	42% 44%	
-125	4.51 4.94 5.33 5.70	3.00 3.50 4.00 4.50 5.00	26 27 29 31	21 23	18 20	17	C	335 323 312	12% 13% 13%	83%	С	383	7%	75%	XC XC VC	533	5% 5% 5%	52%	XC XC	590	4%	42%	

COMBO-JET 110° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

	Flow	Boom	Sprayer S	Speed (L/Ha	on 50cm sp	acing) @	ER1	10-15	#4028	31-15	SR1	10-15	#4028	37-15	MR1	10-15	#4029	91-15	DR1	10-15	#4028	36-15
	L/min	BAR	300L/Ha	400L/Ha	450L/Ha	500L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
	4.52	1.75	18	14	12	11	XC	414	10%	69%												
	4.84	2.00	19	15	13	12	XC	401	10%	71%	XC	543	5%	50%								
110	5.41	2.50	22	16	14	13	XC	379	11%	74%	XC	510	5%	56%	XC	586	4%	44%	XC	636	4%	44%
-15	5.92	3.00	24	18	16	14	VC	361	12%	77%	VC	483	6%	60%		564	5%	47%	XC	614	4%	47%
Nozzles	6.40	3.50	26	19	17	15	С	346	13%	79%	VC	460	6%	64%		546	5%	49%	XC	595	4%	50%
	6.84	4.00	27	21	18	16	С	333	14%	80%	VC	441	7%	67%	XC	530	5%	51%	XC	579	4%	52%
	7.25	4.50	29	22	19	17	С	322	14%	82%	VC	423	7%	69%		517	5%	53%	XC	565	4%	54%
	7.65	5.00	31	23	20	18	С	311	15%	83%	VC	407	7%	71%	XC	504	5%	54%	XC	552	4%	56%
	8.02	5.50	32	24	21	19	С	302	15%	84%	С	393	8%	72%	VC	493	5%	56%	XC	540	5%	57%
	8.38	6.00	34	25	22	20	С	294			С	380	8%	74%		483	5%	57%	XC	530	5%	59%
	Flow	Boom	Sprayer S	Speed (L/Ha	on 50cm sp	acing) @	ER1	10-20	#402	31-20	SR1	10-20	#402			10-20	#4029	91-20				
	L/min	BAR	400L/Ha	500L/Ha	600L/Ha	700L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600				
	6.03	1.75	18	14	12	10	XC	471	7%	61%												
	6.45	2.00	19	15	13	11	XC	457	8%	63%	XC	522	6%	54%								
110	7.21	2.50	22	17	14	12	XC	433	8%	67%	VC	492	6%	60%	XC	569	5%	46%				
-20	7.90	3.00	24	19	16	14	XC	413	9%	70%	VC	467	7%	64%		547	5%	49%				
Nozzles	8.53	3.50	26	20	17	15	XC	397	9%	72%	VC	446	7%	67%		527	6%	52%				
	9.12	4.00	27	22	18	16	XC	383	10%	74%	VC	428	8%	70%		511	6%	54%				
	9.67	4.50	29	23	19	17	VC	370	10%	75%	VC	412	8%	72%		496	6%	56%				
	10.19		31	24	20	17	VC	359	10%	76%	С	398	8%	74%		483	6%	57%				
	10.69		32	26	21	18	С	348	11%	78%	Č	385	8%	75%		471	7%	59%				
	11.17	6.00	34	27	22	19	С	339	11%			373	9%	77%		460	7%	60%				
	Flow	Boom	Sprayer S	Speed (L/Ha	on 50cm sp	acing) @	ER1	10-25	#402	31-25	SR1	10-25	#402	37-25								
	L/min	BAR	500L/Ha	600L/Ha	700L/Ha	800L/Ha					Class	VMD	<141	<600								
	7.54	1.75	18	15	13	11	XC	470	7%	61%												
	0.00																					
	8.06	2.00	19	16	14	12	XC	456	7%	64%					Į							
110	9.01	2.50	22	18	15	14	XC	433	7%	69%	VC	480	6%	60%								
-25	9.01 9.87	2.50 3.00	22 24	18 20	15 17	14 15	XC XC	433 414	7% 8%	69% 72%	VC	458	7%	64%								
	9.01 9.87 10.66	2.50 3.00 3.50	22 24 26	18 20 21	15 17 18	14 15 16	XC XC	433 414 397	7% 8% 8%	69% 72% 75%	VC VC	458 439	7% 7%	64% 66%								
-25	9.01 9.87 10.66 11.40	2.50 3.00 3.50 4.00	22 24 26 27	18 20 21 23	15 17 18 20	14 15 16 17	XC XC XC XC	433 414 397 383	7% 8% 8% 8%	69% 72% 75% 77%	VC VC VC	458 439 423	7% 7% 8%	64% 66% 68%								
-25	9.01 9.87 10.66 11.40 12.09	2.50 3.00 3.50 4.00 4.50	22 24 26 27 29	18 20 21 23 24	15 17 18 20 21	14 15 16 17 18	XC XC XC XC	433 414 397 383 371	7% 8% 8% 8% 8%	69% 72% 75% 77% 78%	VC VC VC	458 439 423 408	7% 7%	64% 66% 68% 70%								
-25	9.01 9.87 10.66 11.40 12.09 12.74	2.50 3.00 3.50 4.00 4.50 5.00	22 24 26 27 29 31	18 20 21 23 24 25	15 17 18 20 21 22	14 15 16 17 18 19	XC XC XC XC VC VC	433 414 397 383 371 360	7% 8% 8% 8% 8% 8%	69% 72% 75% 77% 78% 80%	VC VC VC VC	458 439 423 408 396	7% 7% 8%	64% 66% 68% 70% 72%								
-25	9.01 9.87 10.66 11.40 12.09 12.74 13.36	2.50 3.00 3.50 4.00 4.50 5.00 5.50	22 24 26 27 29 31 32	18 20 21 23 24 25 27	15 17 18 20 21 22 23	14 15 16 17 18 19 20	XC XC XC XC VC VC	433 414 397 383 371 360 350	7% 8% 8% 8% 8% 8%	69% 72% 75% 77% 78% 80% 81%	VC VC VC C C	458 439 423 408	7% 7% 8% 8%	64% 66% 68% 70% 72% 73%								
-25	9.01 9.87 10.66 11.40 12.09 12.74 13.36 13.96	2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00	22 24 26 27 29 31 32 34	18 20 21 23 24 25 27 28	15 17 18 20 21 22 23 24	14 15 16 17 18 19 20 21	XC XC XC VC VC C	433 414 397 383 371 360 350 341	7% 8% 8% 8% 8% 8% 8%	69% 72% 75% 77% 78% 80% 81% 82%	VC VC VC VC	458 439 423 408 396	7% 7% 8% 8% 8%	64% 66% 68% 70% 72%								
-25	9.01 9.87 10.66 11.40 12.09 12.74 13.36 13.96 Flow	2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom	22 24 26 27 29 31 32 34 Sprayer \$	18 20 21 23 24 25 27 28 Speed (L/Ha	15 17 18 20 21 22 23 24 on 50cm sp	14 15 16 17 18 19 20 21 acing) @	XC XC XC XC VC C C ER1	433 414 397 383 371 360 350 341 10-30	7% 8% 8% 8% 8% 8% 9% #402	69% 72% 75% 77% 78% 80% 81% 82%	VC VC VC C C	458 439 423 408 396 384	7% 7% 8% 8% 8% 8%	64% 66% 68% 70% 72% 73%								
-25	9.01 9.87 10.66 11.40 12.09 12.74 13.36 13.96 Flow L/min	2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR	22 24 26 27 29 31 32 34 Sprayer 600L/Ha	18 20 21 23 24 25 27 28 Speed (L/Ha 700L/Ha	15 17 18 20 21 22 23 24 on 50cm sp 800L/Ha	14 15 16 17 18 19 20 21 pacing) @ 900L/Ha	XC XC XC VC VC C C ER1 Class	433 414 397 383 371 360 350 341 10-30 VMD	7% 8% 8% 8% 8% 8% 9% #402 <141	69% 72% 75% 77% 78% 80% 81% 82% 81-30 <600	VC VC VC C C	458 439 423 408 396 384	7% 7% 8% 8% 8% 8%	64% 66% 68% 70% 72% 73%								
-25	9.01 9.87 10.66 11.40 12.09 12.74 13.36 13.96 Flow L/min 9.05	2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75	22 24 26 27 29 31 32 34 Sprayer \$600L/Ha 18	18 20 21 23 24 25 27 28 Speed (L/Ha 700L/Ha 16	15 17 18 20 21 22 23 24 on 50cm sp 800L/Ha 14	14 15 16 17 18 19 20 21 pacing) @ 900L/Ha 12	XC XC XC XC VC VC C C C ER1 Class UC	433 414 397 383 371 360 350 341 10-30 VMD 483	7% 8% 8% 8% 8% 8% 9% #402 <141 6%	69% 72% 75% 77% 78% 80% 81% 82% 31-30 <600 59%	VC VC VC C C	458 439 423 408 396 384	7% 7% 8% 8% 8% 8%	64% 66% 68% 70% 72% 73%								
-25 Nozzles	9.01 9.87 10.66 11.40 12.09 12.74 13.36 13.96 Flow L/min 9.05 9.67	2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00	22 24 26 27 29 31 32 34 Sprayer 6 600L/Ha 18	18 20 21 23 24 25 27 28 Speed (L/Ha 700L/Ha 16 17	15 17 18 20 21 22 23 24 on 50cm sp 800L/Ha 14	14 15 16 17 18 19 20 21 acing) @ 900L/Ha 12	XC XC XC XC VC C C C ER1 Class UC XC	433 414 397 383 371 360 350 341 10-30 VMD 483 469	7% 8% 8% 8% 8% 8% 9% #402 <141 6% 6%	69% 72% 75% 77% 78% 80% 81% 82% 81-30 <600 59% 61%	VC VC VC C C	458 439 423 408 396 384	7% 7% 8% 8% 8% 8%	64% 66% 68% 70% 72% 73%								
-25 Nozzles	9.01 9.87 10.66 11.40 12.09 12.74 13.36 13.96 Flow L/min 9.05 9.67 10.81	2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50	22 24 26 27 29 31 32 34 Sprayer 5 600L/Ha 18 19	18 20 21 23 24 25 27 28 Speed (L/Ha 700L/Ha 16 17	15 17 18 20 21 22 23 24 on 50cm sp 800L/Ha 14 15	14 15 16 17 18 19 20 21 acing) @ 900L/Ha 12 13	XC XC XC XC VC C C C ER1 Class UC XC	433 414 397 383 371 360 350 341 10-30 VMD 483 469 447	7% 8% 8% 8% 8% 8% 9% #4020 <141 6% 6% 7%	69% 72% 75% 77% 78% 80% 81% 82% 31-30 <600 59% 61% 64%	VC VC VC C C	458 439 423 408 396 384	7% 7% 8% 8% 8% 8%	64% 66% 68% 70% 72% 73%								
-25 Nozzles 110 -30	9.01 9.87 10.66 11.40 12.09 12.74 13.36 13.96 Flow L/min 9.05 9.67 10.81 11.84	2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00	22 24 26 27 29 31 32 34 Sprayer 600L/Ha 18 19 22	18 20 21 23 24 25 27 28 Speed (L/Ha 700L/Ha 16 17	15 17 18 20 21 22 23 24 on 50cm sp 800L/Ha 14 15 16	14 15 16 17 18 19 20 21 acing) @ 900L/Ha 12 13 14	XC XC XC VC VC C C C ER1 Class UC XC XC XC	433 414 397 383 371 360 350 341 10-30 VMD 483 469 447 429	7% 8% 8% 8% 8% 8% 9% #402 <141 6% 6% 7%	69% 72% 75% 77% 78% 80% 81% 82% 81-30 <600 59% 61% 64% 66%	VC VC VC C C	458 439 423 408 396 384	7% 7% 8% 8% 8% 8%	64% 66% 68% 70% 72% 73%								
-25 Nozzles	9.01 9.87 10.66 11.40 12.09 12.74 13.36 13.96 Flow L/min 9.05 9.67 10.81 11.84 12.79	2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00	22 24 26 27 29 31 32 34 Sprayer 600L/Ha 18 19 22 24	18 20 21 23 24 25 27 28 Speed (L/Ha 700L/Ha 16 17 19 20	15 17 18 20 21 22 23 24 on 50cm sp 800L/Ha 14 15 16 18	14 15 16 17 18 19 20 21 acing) @ 900L/Ha 12 13 14 16	XC XC XC VC VC C C C ER1 Class UC XC XC XC XC XC	433 414 397 383 371 360 350 341 10-30 VMD 483 469 447 429 413	7% 8% 8% 8% 8% 8% 8% 4402 <141 6% 6% 7% 7% 8%	69% 72% 75% 77% 80% 81% 82% 81-30 <600 59% 61% 64% 66%	VC VC VC C C	458 439 423 408 396 384	7% 7% 8% 8% 8% 8%	64% 66% 68% 70% 72% 73%								
-25 Nozzles 110 -30	9.01 9.87 10.66 11.40 12.09 12.74 13.36 13.96 Flow L/min 9.05 9.67 10.81 11.84 12.79 13.68	2.50 3.00 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00 4.00	22 24 26 27 29 31 32 34 Sprayer 600L/Ha 18 19 22 24 26	18 20 21 23 24 25 27 28 Speed (L/Ha 700L/Ha 16 17 19 20 22 23	15 17 18 20 21 22 23 24 on 50cm sp 800L/Ha 14 15 16 18 19 21	14 15 16 17 18 19 20 21 acing) @ 900L/Ha 12 13 14 16 17	XC XC XC VC VC C C C ER1 Class UC XC XC XC XC XC XC XC	433 414 397 383 371 360 350 341 10-30 VMD 483 469 447 429 413 400	7% 8% 8% 8% 8% 8% 9% #402 <141 6% 6% 7% 7% 8%	69% 72% 75% 77% 80% 81% 82% 81-30 <600 59% 64% 66% 66% 70%	VC VC VC C C	458 439 423 408 396 384	7% 7% 8% 8% 8% 8%	64% 66% 68% 70% 72% 73%								
-25 Nozzles 110 -30	9.01 9.87 10.66 11.40 12.09 12.74 13.36 13.96 Flow L/min 9.05 9.67 10.81 11.84 12.79 13.68 14.51	2.50 3.00 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50 3.50 4.00 4.50	22 24 26 27 29 31 32 34 Sprayer 600L/Ha 18 19 22 24 26 27 29	18 20 21 23 24 25 27 28 Speed (L/Ha 700L/Ha 16 17 19 20 22 23 25	15 17 18 20 21 22 23 24 on 50cm sp 800L/Ha 14 15 16 18 19 21	14 15 16 17 18 19 20 21 acing) @ 900L/Ha 12 13 14 16 17 18	XC XC XC VC VC C C C ER1 Class UC XC XC XC XC XC XC XC XC XC	433 414 397 383 371 360 350 341 10-30 VMD 483 469 447 429 413 400 388	7% 8% 8% 8% 8% 8% 9% #402 <141 6% 6% 7% 7% 8% 8%	69% 72% 75% 77% 80% 81% 82% 81-30 <600 59% 61% 66% 66% 70% 71%	VC VC VC C C	458 439 423 408 396 384	7% 7% 8% 8% 8% 8%	64% 66% 68% 70% 72% 73%								
-25 Nozzles 110 -30	9.01 9.87 10.66 11.40 12.09 12.74 13.36 13.96 Flow L/min 9.05 9.67 10.81 11.84 12.79 13.68 14.51 15.29	2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00	22 24 26 27 29 31 32 34 Sprayer 600L/Ha 18 19 22 24 26 27 29 31	18 20 21 23 24 25 27 28 Speed (L/Ha 700L/Ha 16 17 19 20 22 23 25 26	15 17 18 20 21 22 23 24 on 50cm sp 800L/Ha 14 15 16 18 19 21 22 23	14 15 16 17 18 19 20 21 acing) 20 900L/Ha 12 13 14 16 17 18	XC XC XC VC VC C C ER11 Classs UC XC XC XC XC XC XC XC XC XC	433 414 397 383 371 360 350 341 10-30 VMD 483 469 447 429 413 400 388 377	7% 8% 8% 8% 8% 8% 9% 4020 <141 6% 6% 7% 7% 8% 8% 9%	69% 72% 75% 77% 80% 81% 82% 81-30 <600 59% 61% 66% 66% 70% 71% 72%	VC VC VC C C	458 439 423 408 396 384	7% 7% 8% 8% 8% 8%	64% 66% 68% 70% 72% 73%								
-25 Nozzles 110 -30	9.01 9.87 10.66 11.40 12.09 12.74 13.36 13.96 Flow L/min 9.05 9.67 10.81 11.84 12.79 13.68 14.51	2.50 3.00 4.00 4.50 5.00 5.50 6.00 BOOM BAR 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.50	22 24 26 27 29 31 32 34 Sprayer 600L/Ha 18 19 22 24 26 27 29	18 20 21 23 24 25 27 28 Speed (L/Ha 700L/Ha 16 17 19 20 22 23 25	15 17 18 20 21 22 23 24 on 50cm sp 800L/Ha 14 15 16 18 19 21	14 15 16 17 18 19 20 21 acing) @ 900L/Ha 12 13 14 16 17 18	XC XC XC VC VC C C C ER1 Class UC XC XC XC XC XC XC XC XC XC	433 414 397 383 371 360 350 341 10-30 VMD 483 469 447 429 413 400 388 377 368	7% 8% 8% 8% 8% 8% 9% #402 <141 6% 6% 7% 7% 8% 8%	69% 72% 75% 77% 80% 81% 82% 81-30 <600 59% 61% 64% 66% 70% 71% 72% 73%	VC VC VC C C	458 439 423 408 396 384	7% 7% 8% 8% 8% 8%	64% 66% 68% 70% 72% 73%								

LERAP Drift Reduction Star Rating for COMBO-JET 110° Spray Nozzles [For UK applicators]

Local Environmental Risk Assessments for Pesticides (LERAP) certification is completed in the UK to provide applications a means to qualify a local drift reduction assessment based on the nozzles used for an application.

Stay tuned for further LERAP nozzle testing for more nozzles LERAP RATING Pressure Range 1.0 - 1.5 BAR 1.0 - 1.5 BAR 90%

The 4-star LERAP rating is a new rating that illustrates the
highest classification for drift reduction within the standard
certification. (List updated January 2021)

i.	LERAP RATING	Nozzle	Pressure Range
1		DR110-025	1.0 - 2.5 BAR
1		DR110-03	1.6 - 3.0 BAR
1		DR110-04	1.0 - 5.0 BAR
1	***	DR110-05	1.6 - 5.0 BAR
1	75%	DR110-06	3.1 - 5.0 BAR
1	Drift Reduction	MR110-04	1.0 - 2.5 BAR
_	Dint neudonon	MR110-05	1.6 - 5.0 BAR
		MR110-06	1.6 - 5.0 BAR
		SR110-05	1.0 - 1.5 BAR

LERAP RATING	Nozzle	Pressure Range
	DR110-025	2.6 - 3.5 BAR
**	DR110-03	3.1 - 5.0 BAR
50%	MR110-04	2.6 - 3.5 BAR
Drift Reduction	SR110-05	1.6 - 3.0 BAR

More information on LERAP certification, process, and the most up to date listing of approved nozzles and

their ratings, is available from the Health and Safety Executive (HSE), also available online @

For the updated list on COMBO-JET

nozzles, visit www.wilger.net/LERAP

COMBO-JET 80° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE S572.1 Standard)
Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Extra data (e, g. VMD, etc) can vary between testing equipment and method, and is provided as an educational resource only.

Tips sized up to 110:06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110:06 verified on Malwern.

Fine (F) Medium (M) Coarse (C)
Very Coarse (VC)
Extremely Coarse (XC)
Ultra Coarse (UC)

VMD (Volume Median Diameter) The median droplet (in μ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141µ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially.

% <600µ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage. As % of useful droplets lowers

Duty Cycle (Effective 'on time' of solenoid)

The duty cycle is the effective on time of a PWM solenoid. Generally speed ranges are based on a 25% - 100% duty cycle. When selecting a nozzle, often a duty cycle of 60-80% is recommended at typical speeds, providing flexibility for upper speed & turning situations, as well as slower spraying speeds. It is not advised to spray below 40% duty cycle

Calculating Duty Cycle on Printed Charts (Useful for nozzle sizing & selection) On Wilger printed charts, typically a SPEED RANGE is provided, but the duty cycle % is a dynamic factor based on the sprayers travel speed. To calculate a duty cycle at a given travel speed, divide CURRENT sprayer speed into max nozzle speed. (e.g. 15mph / 20mph max = 75% duty cycle)

					, , ,																		
Nozzle	Flow	Boom	Tip		lication Rate							ı; VMI				%<1				<u>0μ (S</u>	Small D		
Size &	Rate	BAR	BAR		on 50cm No					° Serie				Series				° Serie				Serie:	
Angle	L/min			(@ Sprayer Sp	oeed in km/	h		VMD													<141	
	Flow	Boom		Sprayer	Speed (L/Ha	on 50cm sp	acing) @														0-005		
	L/min	BAR	BAR	20L/Ha	30L/Ha	40L/Ha	50L/Ha		VMD			Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<60
	0.140	1.50		2.1-8.4	1.4-5.6	1.1-4.2	0.9-3.4	F	163		100%												
00	0.151	1.75		2.3-9	1.5-6	1.1-4.5	0.9-3.6	Ė	156	41%	100%					N.4	040	100/	1000/	0	000	100/	100
80	0.161	2.00		2.4-9.7	1.6-6.4	1.2-4.8	1-3.9	-	150	45%	100%					M F	240		100%		282	10%	
-005	0.180 0.197	2.50 3.00		2.8-11 3-12	1.8-7.2 2-7.9	1.4-5.4 1.5-5.9	1.1-4.3 1.2-4.7	F	141	52% 58%	100% 100%					F	212 192		100% 100%	M	245 218	17% 22%	
Nozzles	0.197	3.50		3.3-12	2.1-8.5	1.6-6.4	1.3-5.1	E	127	63%	100%					F	177		100%	F	198	26%	
	0.213	4.00	4.00	3.5-13	2.3-9.1	1.7-6.8	1.4-5.5	÷	122	67%	100%					F	164		100%	Ė	181	30%	
	0.242	4.50		3.8-15	2.4-9.7	1.8-7.3	1.5-5.8	÷	118	71%	100%					F	154		100%	Ė	168	33%	
	0.255	5.00		3.8-15	2.5-10	1.9-7.6	1.5-6.1	÷	115	74%	100%					F	145		100%	Ė	157	36%	
	0.267	5.50		4-16	2.8-11	2-8	1.6-6.4	Ė	112	77%	100%					F	138		100%	Ė	148	38%	
	0.279	6.00		4.3-17	2.8-11	2.1-8.4	1.7-6.7	Ė	109	80%	100%					Ė	131		100%	F	140	41%	
	Flow	Boom			Speed (L/Ha				0-0067		0-0067	SB80)-0067	#4028	3-0067		0-0067		0-0067		0-0067	#4028	
	L/min	BAR	BAR	20L/Ha	30L/Ha	40L/Ha	50L/Ha	Class		<141	<600		VMD	<141		Class	VMD		<600		VMD	<141	
	0.187	1.50		2.8-11	1.9-7.5	1.4-5.6	1.1-4.5	F	193	24%	100%	Ciaco	VIVID	X111	1000	Cidoo	VIVID	×111	1000	Oldoc	VIVID	X111	-
	0.202	1.75	1.75	3-12	2-8.1	1.5-6.1	1.2-4.8	Ė	182	29%	100%												
80	0.216	2.00	2.00	3.3-13	2.2-8.6	1.6-6.5	1.3-5.2	F	173	34%	100%					F	214	23%	100%	С	313	8%	100
-0067	0.241	2.50		3.5-14	2.4-9.7	1.8-7.2	1.5-5.8	F	159	41%	100%					F	191		100%	Č	280	12%	
Nozzles	0.265	3.00		4-16	2.8-11	2-7.9	1.6-6.3	F	148	47%	100%					F	174		100%	M	256	15%	
	0.286	3.50		4.3-17	2.8-11	2.2-8.6	1.7-6.9	F	140	53%	100%					F	161		100%	M	237	17%	
	0.305	4.00		4.5-18	3-12	2.3-9.2	1.8-7.3	F	133	57%	100%					F	150		100%	M	222	19%	
	0.324	4.50	4.50	4.8-19	3.3-13	2.4-9.7	2-7.8	F	127	61%	100%					F	141	49%	100%	F	209	21%	100
	0.341	5.00	5.00	5-20	3.5-14	2.5-10	2.1-8.2	F	122	64%	100%					F	134	52%	100%	F	199	23%	100
	0.358	5.50	5.50	5.3-21	3.5-14	2.8-11	2.2-8.6	F	118	68%	100%					F	127	55%	100%	F	190	24%	100
	0.374	6.00	6.00	5.5-22	3.8-15	2.8-11	2.3-9	F	114	71%	100%					F	122	58%	100%	F	182	26%	100
	Flow	Boom	Tip		Speed (L/Ha		acing) @	ER	80-01	#402	70-01	SR8	30-01	#4028		MR8	30-01	#402	90-01	DR	80-01	#4028	80- 0
	L/min	BAR	BAR	20L/Ha	30L/Ha	40L/Ha	50L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<60
	0.279	1.50		4.3-17	2.8-11	2.1-8.4	1.7-6.7	F	171	31%	100%												
	0.301	1.75	1.74	4.5-18	3-12	2.3-9	1.8-7.2	F	164	36%	100%												
80	0.322	2.00		4.8-19	3.3-13	2.4-9.7	1.9-7.7	F	158	40%	100%	M	238	19%	97%								
-01	0.360	2.50		5.5-22	3.5-14	2.8-11	2.2-8.6	F	148	46%	100%	F	210	26%	97%	F	201	27%	97%	С	287	12%	95
Nozzles	0.394	3.00		6-24	4-16	3-12	2.4-9.5	F	140	52%	100%	F	190	32%	97%	F	184	32%	97%	M	265	15%	97
	0.426	3.50		6.5-26	4.3-17	3.3-13	2.5-10	F	134	56%	100%	F	174	36%	98%	F	172	36%		M	247	17%	980
	0.455	4.00		6.8-27	4.5-18	3.5-14	2.8-11	F	129	60%	100%	ᆫ	162	40%	98%	F	162	39%		M	233	19%	999
	0.483	4.50		7.3-29	4.8-19	3.5-14	3-12	Ė	125	64%	100%	Ė	152	44%	98%	F	153	42%		M	221	20%	
	0.509	5.00		7.8-31	5-20	3.8-15	3-12	Ė	121	67%	100%	Ė	143	47%	98%	F	146	45%		F	211	22%	
	0.534		5.48	8-32	5.3-21	4-16	3.3-13	F	118	70%	100%	-	136	50%	98%	F	140	48%		F	202	23%	
	0.557	_	5.98	8.3-33 Carover	5.5-22	4.3-17	3.3-13	_	115	73%	100%		129	52%	98%		134	50%		_	195	24%	
	Flow L/min	Boom BAR	Tip BAR	35L/Ha	Speed (L/Ha				0-015 VMD									#4028 <141	90-015		VMD	#4028 <141	
	0.417	1.50		3.5-14	50L/Ha 2.5-10	60L/Ha 2.1-8.3	75L/Ha 1.7-6.7	F	195	<141 22%	100%	Class	VMD	<141	<000	Class	VIVID	<141	<000	Class	VIVID	<141	<00
	0.417	1.75		3.8-15	2.8-11	2.1-0.3	1.8-7.2	F	188	25%	100%												
80	0.430	2.00	1.73	4.3-17	3-12	2.4-9.6	1.9-7.7	F	182	28%	100%	М	268	15%	95%	С	329	10%	94%	VC	424	4%	86
-015	0.538	2.50	2.48	4.5-17	3.3-13	2.4-9.0	2.2-8.6	F	172	32%	100%		241	20%	96%	C	298	13%	96%	VC	394	5%	89
Nozzles	0.590	3.00	2.40	5-20	3.5-13	3-12	2.4-9.4	F	164	36%	100%		222	23%	96%	C	274	15%	97%	C	371	6%	91
HUZZIOS	0.637	3.50		5.5-22	3.8-15	3.3-13	2.5-10	F	158	39%	100%		207	26%	97%	M	255	17%		C	352	7%	92
				5.8-23	4-16	3.5-14	2.8-11	F	152	42%	100%	F	194	29%	97%	M	240	19%	98%	C	337	8%	93
		4.00	1.3 Mh												97%	M	228	21%	98%	С	324	8%	94
	0.681	4.00	3.96 4.46		4.3-17	3.5-14	3-12	E				F	184	31%									
	0.681 0.722	4.50	4.46	6.3-25	4.3-17 4.5-18	3.5-14 3.8-15	3-12 3-12	F	148	44%	100%	F	184 175	31%							313	9%	95
	0.681	4.50 5.00	4.46 4.96		4.3-17 4.5-18 4.8-19	3.5-14 3.8-15 4-16	3-12 3-12 3.3-13	F F		44% 46%	100% 100%	F	175 168	34%	98%	M	217	22%	99%	С	313 303	9% 10%	
	0.681 0.722 0.761	4.50 5.00 5.50	4.46	6.3-25 6.5-26	4.5-18	3.8-15	3-12	F F F	148 144	44%	100%	F	175	34% 35%	98% 98%	M			99% 99%				95
	0.681 0.722 0.761 0.798	4.50 5.00 5.50	4.46 4.96 5.45	6.3-25 6.5-26 6.8-27 7.3-29	4.5-18 4.8-19	3.8-15 4-16 4.3-17	3-12 3.3-13 3.3-13		148 144 140	44% 46% 48% 50%	100% 100% 100%	F	175 168	34%	98% 98% 98%	M F F	217 208	22% 23% 24%	99% 99%	C C C	303	10%	95 96
	0.681 0.722 0.761 0.798 0.834	4.50 5.00 5.50 6.00	4.46 4.96 5.45 5.95	6.3-25 6.5-26 6.8-27 7.3-29	4.5-18 4.8-19 5-20	3.8-15 4-16 4.3-17	3-12 3.3-13 3.3-13		148 144 140 137	44% 46% 48% 50%	100% 100% 100% 100%	F F F SR8	175 168 161	34% 35% 37%	98% 98% 98%	M F F MR8	217 208 200	22% 23% 24% #402	99% 99% 99%	C C C	303 295	10% 10%	95 96 80-0
	0.681 0.722 0.761 0.798 0.834 Flow	4.50 5.00 5.50 6.00 Boom	4.46 4.96 5.45 5.95 Tip BAR	6.3-25 6.5-26 6.8-27 7.3-29 Sprayer	4.5-18 4.8-19 5-20 Speed (L/Ha	3.8-15 4-16 4.3-17 on 50cm sp	3-12 3.3-13 3.3-13 acing) @		148 144 140 137 80-02	44% 46% 48% 50% #402 <141	100% 100% 100% 100% 70-02	F F F SR8	175 168 161 30-02	34% 35% 37% #4028	98% 98% 98% 38-02	M F F MR8	217 208 200 30-02	22% 23% 24% #402	99% 99% 99-02	C C C	303 295 30-02	10% 10% #4028	95 96 80-0
	0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554	4.50 5.00 5.50 6.00 Boom BAR	4.46 4.96 5.45 5.95 Tip BAR 1.47	6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40L/Ha	4.5-18 4.8-19 5-20 Speed (L/Ha 50L/Ha	3.8-15 4-16 4.3-17 on 50cm sp 60L/Ha	3-12 3.3-13 3.3-13 acing) @ 70L/Ha	ER: Class	148 144 140 137 80-02 VMD	44% 46% 48% 50% #402 <141 29%	100% 100% 100% 100% 70-02 <600	F F SR8 Class	175 168 161 80-02 VMD	34% 35% 37% #4028 <141	98% 98% 98% 38-02	M F F MR8	217 208 200 30-02 VMD	22% 23% 24% #402	99% 99% 99-02 <600	C C C	303 295 30-02	10% 10% #4028	95 96 80-0
80	0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554	4.50 5.00 5.50 6.00 Boom BAR 1.50 1.75	4.46 4.96 5.45 5.95 Tip BAR 1.47 1.72	6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40L/Ha 4.3-17	4.5-18 4.8-19 5-20 Speed (L/Ha 50L/Ha 3.3-13	3.8-15 4-16 4.3-17 on 50cm sp 60L/Ha 2.8-11	3-12 3.3-13 3.3-13 acing) @ 70L/Ha 2.4-9.5	Class F	148 144 140 137 80-02 VMD 182	44% 46% 48% 50% #402 <141 29%	100% 100% 100% 100% 70-02 <600 100%	F F F SR8 Class	175 168 161 80-02 VMD	34% 35% 37% #4028 <141	98% 98% 98% 88-02 <600 94% 95%	M F F MR8 Class	217 208 200 30-02	22% 23% 24% #402	99% 99% 99-02 <600	C C C	303 295 30-02	10% 10% #4028	95 96 80-(
80 -02	0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554 0.598 0.639 0.715	4.50 5.00 5.50 6.00 Boom BAR 1.50 1.75 2.00 2.50	4.46 4.96 5.45 5.95 Tip BAR 1.47 1.72 1.97 2.46	6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40L/Ha 4.3-17 4.5-18	4.5-18 4.8-19 5-20 Speed (L/Ha 50L/Ha 3.3-13 3.5-14	3.8-15 4-16 4.3-17 on 50cm sp 60L/Ha 2.8-11 3-12	3-12 3.3-13 3.3-13 acing) @ 70L/Ha 2.4-9.5 2.5-10	Class F	148 144 140 137 80-02 VMD 182 177	44% 46% 48% 50% #402 <141 29% 31%	100% 100% 100% 100% 70-02 <600 100%	F F F SR8 Class	175 168 161 30-02 VMD	34% 35% 37% #4023 <141	98% 98% 98% 38-02 <600	M F F MR8 Class	217 208 200 30-02 VMD 331 309	22% 23% 24% #402 <141	99% 99% 99% 90-02 <600	C C DRI	303 295 30-02 VMD	10% 10% #4028 <141	95 96 80-4 <6
	0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554 0.598 0.639 0.715 0.783	4.50 5.00 5.50 6.00 Boom BAR 1.50 1.75 2.00 2.50 3.00	4.46 4.96 5.45 5.95 Tip BAR 1.47 1.72 1.97 2.46 2.95	6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40L/Ha 4.3-17 4.5-18 4.8-19	4.5-18 4.8-19 5-20 Speed (L/Ha 50L/Ha 3.3-13 3.5-14 3.8-15	3.8-15 4-16 4.3-17 on 50cm sp 60L/Ha 2.8-11 3-12 3.3-13 3.5-14 4-16	3-12 3.3-13 3.3-13 acing) @ 70L/Ha 2.4-9.5 2.5-10 2.8-11	Class F	148 144 140 137 80-02 VMD 182 177 172	44% 46% 48% 50% #402 <141 29% 31% 33%	100% 100% 100% 100% 70-02 <600 100% 100%	F F SR8 Class	175 168 161 80-02 VMD 274 261	34% 35% 37% #4028 <141 13% 15%	98% 98% 98% 88-02 <600 94% 95%	M F F MR8 Class	217 208 200 30-02 VMD	22% 23% 24% #402 <141 8% 10%	99% 99% 99% 90-02 <600	C C DRO Class	303 295 30-02 VMD	10% 10% #4028 <141	95 96 80-1 <6 80 80
-02	0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554 0.598 0.639 0.715 0.783	4.50 5.00 5.50 6.00 Boom BAR 1.50 1.75 2.00 2.50 3.00 3.50	4.46 4.96 5.45 5.95 Tip BAR 1.47 1.72 1.97 2.46 2.95 3.44	6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40L/Ha 4.3-17 4.5-18 4.8-19 5.3-21	4.5-18 4.8-19 5-20 Speed (L/Ha 50L/Ha 3.3-13 3.5-14 3.8-15 4.3-17 4.8-19 5-20	3.8-15 4-16 4.3-17 on 50cm sp 60L/Ha 2.8-11 3-12 3.3-13 3.5-14	3-12 3.3-13 3.3-13 acing) @ 70L/Ha 2.4-9.5 2.5-10 2.8-11 3-12	Class F	148 144 140 137 80-02 VMD 182 177 172 165	44% 46% 48% 50% #402 <141 29% 31% 33% 37%	100% 100% 100% 100% 70-02 <600 100% 100% 100%	F F SRE Class	175 168 161 30-02 VMD 274 261 242	34% 35% 37% #4028 <141 13% 15% 19%	98% 98% 98% 38-02 <600 94% 95% 96%	M F F MR8 Class	217 208 200 30-02 VMD 331 309	22% 23% 24% #402 <141 8% 10% 12%	99% 99% 99% 90-02 <600 93% 94%	C C C DRI	303 295 30-02 VMD 461 433	10% 10% #4028 <141 3% 4%	95 96 80-6 <6 80 83 85
-02	0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554 0.598 0.639 0.715 0.783	4.50 5.00 5.50 6.00 Boom BAR 1.50 1.75 2.00 2.50 3.00 3.50	4.46 4.96 5.45 5.95 Tip BAR 1.47 1.72 1.97 2.46 2.95 3.44	6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40L/Ha 4.3-17 4.5-18 4.8-19 5.3-21 5.8-23	4.5-18 4.8-19 5-20 Speed (L/Ha 50L/Ha 3.3-13 3.5-14 3.8-15 4.3-17 4.8-19 5-20 5.5-22	3.8-15 4-16 4.3-17 on 50cm sp 60L/Ha 2.8-11 3-12 3.3-13 3.5-14 4-16	3-12 3.3-13 3.3-13 acing) @ 70L/Ha 2.4-9.5 2.5-10 2.8-11 3-12 3.3-13	Class F	148 144 140 137 80-02 VMD 182 177 172 165 159	44% 46% 48% 50% #402 <141 29% 31% 33% 37% 39%	100% 100% 100% 100% 70-02 <600 100% 100% 100% 100%	F F SR8 Class C M M M	175 168 161 30-02 VMD 274 261 242 228	34% 35% 37% #4020 <141 13% 15% 19% 22%	98% 98% 98% 38-02 <600 94% 95% 96% 97%	M F F MR8 Class	217 208 200 30-02 VMD 331 309 291	22% 23% 24% #402 <141 8% 10% 12%	99% 99% 99-02 <600 93% 94% 94% 95%	C C DRO Class VC VC VC VC	303 295 30-02 VMD 461 433 412	10% 10% #4028 <141 3% 4% 5%	95 96 80-(<6 80 83 85 87
-02	0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554 0.598 0.639 0.715 0.783 0.846 0.904	4.50 5.00 5.50 6.00 Boom BAR 1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50	4.46 4.96 5.45 5.95 Tip BAR 1.47 1.72 1.97 2.46 2.95 3.44 3.93 4.42	6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40L/Ha 4.3-17 4.5-18 4.8-19 5.3-21 5.8-23 6.3-25	4.5-18 4.8-19 5-20 Speed (L/Ha 50L/Ha 3.3-13 3.5-14 3.8-15 4.3-17 4.8-19 5-20	3.8-15 4-16 4.3-17 on 50cm sp 60L/Ha 2.8-11 3-12 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19	3-12 3.3-13 3.3-13 acing) @ 70L/Ha 2.4-9.5 2.5-10 2.8-11 3-12 3.3-13 3.5-14	Class F	148 144 140 137 80-02 VMD 182 177 172 165 159	44% 46% 48% 50% #402 <141 29% 31% 33% 37% 39% 42%	100% 100% 100% 100% 70-02 <600 100% 100% 100% 100% 100%	F F SR8 Class C M M M	175 168 161 30-02 VMD 274 261 242 228 216	34% 35% 37% #4023 <141 13% 15% 19% 22% 24%	98% 98% 98% 38-02 <600 94% 95% 96% 97%	M F F MR8 Class	217 208 200 30-02 VMD 331 309 291 277 266 256	22% 23% 24% #402 <141 8% 10% 12% 14%	99% 99% 99-02 <600 93% 94% 94% 95% 95%	C C C C C VC VC C C C C	303 295 30-02 VMD 461 433 412 394	10% 10% #4028 <141 3% 4% 5% 5%	95 96 80-(<6 80 83 85 87 88
-02	0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554 0.598 0.639 0.715 0.783 0.846 0.904 0.959	4.50 5.00 5.50 6.00 Boom BAR 1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00	4.46 4.96 5.45 5.95 Tip BAR 1.47 1.72 1.97 2.46 2.95 3.44 3.93 4.42 4.92	6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40L/Ha 4.3-17 4.5-18 4.8-19 5.3-21 5.8-23 6.3-25 6.8-27	4.5-18 4.8-19 5-20 Speed (L/Ha 50L/Ha 3.3-13 3.5-14 3.8-15 4.3-17 4.8-19 5-20 5.5-22	3.8-15 4-16 4.3-17 on 50cm sp 60L/Ha 2.8-11 3-12 3.3-13 3.5-14 4-16 4.3-17 4.5-18	3-12 3.3-13 3.3-13 acing) @ 70L/Ha 2.4-9.5 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15	Class F	148 144 140 137 80-02 VMD 182 177 172 165 159 155	44% 46% 48% 50% #402 <141 29% 31% 33% 37% 39% 42% 44%	100% 100% 100% 100% 70-02 <600 100% 100% 100% 100% 100% 100%	F F SRE Class Class M M M M	175 168 161 30-02 VMD 274 261 242 228 216 207	34% 35% 37% #4020 <141 13% 15% 19% 22% 24% 26%	98% 98% 98% 38-02 <600 94% 95% 96% 97% 97%	M F F MR8 Class	217 208 200 30-02 VMD 331 309 291 277 266	22% 23% 24% #402 <141 8% 10% 12% 14% 15% 16%	99% 99% 99-02 <600 93% 94% 94% 95% 95%	C C C C C C C C C C C C C C C C C C C	303 295 30-02 VMD 461 433 412 394 380	10% 10% #4028 <141 3% 4% 5% 5% 6%	95 96 80-(<6) 80 83 85 87 88 89
-02	0.681 0.722 0.761 0.798 0.834 Flow L/min 0.554 0.598 0.639 0.715 0.783 0.846 0.904	4.50 5.00 5.50 6.00 Boom BAR 1.50 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00	4.46 4.96 5.45 5.95 Tip BAR 1.47 1.72 1.97 2.46 2.95 3.44 3.93 4.42 4.92	6.3-25 6.5-26 6.8-27 7.3-29 Sprayer 40L/Ha 4.3-17 4.5-18 4.8-19 5.3-21 5.8-23 6.3-25 6.8-27 7.3-29	4.5-18 4.8-19 5-20 Speed (L/Ha 3.3-13 3.5-14 3.8-15 4.3-17 4.8-19 5-20 5.5-22 5.8-23	3.8-15 4-16 4.3-17 on 50cm sp 60L/Ha 2.8-11 3-12 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19	3-12 3.3-13 3.3-13 acing) @ 70L/Ha 2.4-9.5 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16	Class F	148 144 140 137 80-02 VMD 182 177 172 165 159 155 151	44% 46% 48% 50% #402 <141 29% 31% 33% 37% 39% 42% 44% 46%	100% 100% 100% 100% 70-02 <600 100% 100% 100% 100% 100% 100%	F F SRE Class C M M M M F F	175 168 161 30-02 VMD 274 261 242 228 216 207 199	34% 35% 37% #4020 <141 13% 15% 19% 22% 24% 26% 28%	98% 98% 98% 38-02 <600 94% 95% 96% 97% 97% 97%	M F F MR8 Class	217 208 200 30-02 VMD 331 309 291 277 266 256	22% 23% 24% #402 <141 8% 10% 12% 14% 15% 16% 18%	99% 99% 99-02 <600 93% 94% 94% 95% 95%	C C C C C VC VC C C C C	303 295 30-02 VMD 461 433 412 394 380 368	10% 10% #4020 <141 3% 4% 5% 5% 6% 6%	

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. Shown application information is based on water @ 26.5°C in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 80° Spray Tips - PWM Spray Systems

ASABE Spray Classification (ASABE S572.1 Standard)
Spray quality is categorized based on Dv.0.1 and VMD droplet sizes
Objective testing data by 3rd party, from spray spectrum recording equipment (without wind tunn
use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.) can vary Fine (F)
Medium (M) Coarse (C)
Very Coarse (VC)
Extremely Coarse (XC)
Ultra Coarse (UC) between testing equipment and method, and is provided as an educational resource only. ized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Ma

VMD (Volume Median Diameter) The median droplet (in µ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141µ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially.

% <600µ (% of Small Droplets) % of volume which is made up of small' droplets, useful for coverage As % of useful droplets lowers. overall coverage is reduced.

Duty Cycle (Effective 'on time' of solenoid)

The duty cycle is the effective 'on time' of a PWM solenoid. Generally speed ranges are based on a 25% - 100% duty cycle. When selecting a nozzle, often a duty cycle of 60-80% is recommended at typical speeds, providing flexibility for upper speed & turning situations, as well as slower spraying speeds. It is not advised to spray below 40% duty cycle.

Calculating Duty Cycle on Printed Charts (Useful for nozzle sizing & selection) On Wilger printed charts, typically a SPEED RANGE is provided, but the duty cycle % is a dynamic factor based on the sprayers travel speed. To calculate a duty cycle at a given travel speed, divide CURRENT sprayer speed into max nozzle speed. (e.g. 15mph / 20mph max = 75% duty cycle)

ррог оросси с	Ů					,																	
	Flow	Boom			Speed (L/Ha					#40270													
		BAR	BAR	50L/Ha	60L/Ha	70L/Ha	80L/Ha			<141		Class	VIVID	<141	<bul><bul>buu</bul></bul>	Class	VIVID	<141	<600	Class	VIVID	<141	<60
	0.689 0.744			4.3-17 4.5-18	3.5-14 3.8-15	3-12 3.3-13	2.5-10 2.8-11	M	229 220	18% 20%													
80	0.744			4.8-19	4-16	3.5-13	3-12	F	212	23%		C	302	11%	92%								
-025	0.890			5.3-21	4.5-18	3.8-15	3.3-13	F	200	26%			280	14%	94%	VC	400	6%	83%	VC	442	4%	79%
Nozzles	0.974			5.8-23	4.8-19	4.3-17	3.8-15	F	191	29%			263	16%	95%		374	7%	85%		424	5%	81%
14022103	1.053			6.3-25	5.3-21	4.5-18	4-16	F		31%			249	18%	95%		354	8%	87%		409	5%	83%
	1.125			6.8-27	5.8-23	4.8-19	4.3-17	F	177	33%			238	20%	96%		337	9%	88%		396	6%	84%
	1.193			7.3-29	6-24	5-20	4.5-18	F	171	35%			228	21%	96%		323	10%	89%		385	6%	85%
	1.258			7.5-30	6.3-25	5.5-22	4.8-19	F	167	37%			220	22%	97%		311	10%	90%		376	7%	86%
	1.319			8-32	6.5-26	5.8-23	5-20	F			99%	F	213	24%	97%		301	11%	91%		367	7%	87%
	1.378			8.3-33	7-28	6-24	5.3-21	F		40%	99%	F	207	25%	97%		291	11%	91%		360	8%	87%
	Flow			Sprayer	Speed (L/Ha	on 50cm sp	acing) @		30-03	#4027													
	L/min		BAR	60L/Ha	75L/Ha	100L/Ha	120L/Ha					Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<60
	0.822			4-16	3.3-13	2.5-9.9	2.1-8.2		231		99%												
	0.888			4.5-18	3.5-14	2.8-11	2.2-8.9	M	223		99%												
80	0.950			4.8-19	3.8-15	2.8-11	2.4-9.5	M	217		99%			9%	89%								l
-03	1.062			5.3-21	4.3-17	3.3-13	2.8-11	F	207		99%		325	11%	90%	VC		6%	83%			4%	75%
Nozzles	1.163			5.8-23	4.8-19	3.5-14	3-12	F			99%		304	13%	91%		383	7%	86%	VC		4%	78%
	1.256			6.3-25	5-20	3.8-15	3.3-13	F	193		99%		287	15%	92%		362	8%	87%		424	5%	80%
	1.343			6.8-27	5.3-21	4-16	3.3-13	F		31%	99%		273	16%	92%	C	346 331	9%	89%	C	410	6%	82%
	1.424 1.502			7-28 7.5-30	5.8-23 6-24	4.3-17	3.5-14 3.8-15	F	183	32% 34%	99% 99%	M	261 251	17% 18%	93% 93%	C		10%	90% 91%	C	398	6% 7%	83%
	1.575			7.8-31	6.3-25	4.5-18 4.8-19	4-16	F			99%	M	243		94%	C	319 308	10% 11%	91%		387 378	7%	85%
	1.645			8.3-33	6.5-26	5-20	4-16	Ė	173	36%	00%	M		20%	0/1%	C		11%			370	8%	86%
	Flow				Speed (L/Ha				30-04												30-04		
		BAR	BAR	75L/Ha	100L/Ha	125L/Ha	150L/Ha		VMD	<141													
	1.08			4.3-17	3.3-13	2.5-10	2.2-8.6	М			99%	Olabo		```	1000	Ciaco		```	1000	Ciaco			
	1.17			4.8-19	3.5-14	2.8-11	2.3-9.3	M			99%												
80	1.25		1.87	5-20	3.8-15	3-12	2.5-10	M		20%	99%	С	360	6%	86%								
-04	1.40		2.34	5.5-22	4.3-17	3.3-13	2.8-11	М		22%	99%	С	334	8%	88%	VC	405	6%	82%	XC	527	2%	65%
Nozzles	1.53		2.81	6-24	4.5-18	3.8-15	3-12	F	215	24%	99%	С	314	10%	89%		383	7%	84%			3%	68%
	1.65	3.50	3.28	6.5-26	5-20	4-16	3.3-13	F	208	25%	99%	С	296	11%	90%	С	366	8%	86%	XC	486	4%	71%
	1.77	4.00	3.75	7-28	5.3-21	4.3-17	3.5-14	F	202	27%	99%		281	13%	91%	С	351	9%	87%		471	4%	74%
	1.87	4.50	4.22	7.5-30	5.5-22	4.5-18	3.8-15	F		28%	99%	M	268	14%	92%	С	339	10%	88%		458	4%	75%
	1.97		4.69	8-32	6-24	4.8-19	4-16	F		29%	99%	M	256	15%	92%	С	329	11%	89%		446	5%	77%
			5.15	8.3-33	6.3-25	5-20	4.3-17	F	189	30%	99%	M	245	16%	93%	С	319		90%		436	5%	78%
	2.16			8.8-35	6.5-26	5.3-21	4.3-17	F	186	31%	99%	M	235	17%	93%	С			90%				
	Flow				Speed (L/Ha				30-05	#4027	0-05	SR	30-05	#4028	38-05	MR	30-05	#402	90-05	DRE	30-05	#402	
		BAR	BAR	100L/Ha	125L/Ha	150L/Ha			VMD	<141	< <u>000</u>	Ulass	VIVID	<141	<bul><bul>buu</bul></bul>	Class	VIVID	<141	<600	Class	VIVID	<141	<60
	1.33			4-16 4.3-17	3.3-13	2.8-11	2.3-9.1	C		11%	95%												-
80	1.43		1.81	4.5-17	3.5-14 3.8-15	2.8-11 3-12	2.5-9.8 2.8-11	C	286 276	13% 15%	95%	VC	404	6%	81%								-
-05	1.72	2.00					2.0-11				JJ /0				01/0	V/0		1			ECO	2%	58%
Nozzles		2 50	2 26	5 3-21	1 1-16			I IN/I						Q0/2		AI.	/01	30%	70%	ΥC			62%
			2.26	5.3-21 5.8-23	4-16 4-5-18	3.5-14	3-12	M	261	17%	95%	С	375 351	8% 10%	84%			3%	70%			2%	
100	1.88	3.00	2.72	5.8-23	4.5-18	3.8-15	3.3-13	M	261 249	17% 20%	95% 95%	СС	351	10%	84% 85%	VC	467	4%	73%	XC	540	2% 3%	
	1.88 2.03	3.00 3.50	2.72 3.17	5.8-23 6-24	4.5-18 4.8-19	3.8-15 4-16	3.3-13 3.5-14	M	261 249 240	17% 20% 21%	95% 95% 95%	C C	351 331	10% 11%	84% 85% 87%	VC VC	467 448	4% 5%	73% 76%	XC	540 522	3%	65%
	1.88 2.03 2.17	3.00 3.50 4.00	2.72 3.17 3.62	5.8-23 6-24 6.5-26	4.5-18 4.8-19 5.3-21	3.8-15 4-16 4.3-17	3.3-13 3.5-14 3.8-15	M M M	261 249 240 232	17% 20% 21% 23%	95% 95% 95% 95%	CCCC	351 331 313	10% 11% 12%	84% 85% 87% 88%	VC VC	467 448 432	4% 5% 5%	73% 76% 78%	XC XC	540 522 506	3% 3%	65% 67%
	1.88 2.03	3.00 3.50 4.00 4.50	2.72 3.17 3.62 4.08	5.8-23 6-24 6.5-26 7-28	4.5-18 4.8-19 5.3-21 5.5-22	3.8-15 4-16	3.3-13 3.5-14 3.8-15 4-16	M M M	261 249 240 232 225	17% 20% 21% 23% 24%	95% 95% 95% 95% 95%	CCCC	351 331 313 298	10% 11% 12% 14%	84% 85% 87% 88% 89%	VC VC VC	467 448	4% 5% 5% 6%	73% 76% 78% 79%	XC XC XC XC	540 522 506 493	3%	65%
	1.88 2.03 2.17 2.30	3.00 3.50 4.00 4.50 5.00	2.72 3.17 3.62	5.8-23 6-24 6.5-26	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23	3.8-15 4-16 4.3-17 4.5-18 4.8-19	3.3-13 3.5-14 3.8-15 4-16 4.3-17	M M M	261 249 240 232	17% 20% 21% 23% 24% 26%	95% 95% 95% 95% 95%	CCCCC	351 331 313 298 284 272	10% 11% 12%	84% 85% 87% 88% 89%	VC VC VC VC	467 448 432 418	4% 5% 5%	73% 76% 78%	XC XC XC XC	540 522 506 493 482	3% 3% 3%	65% 67% 70%
	1.88 2.03 2.17 2.30 2.43	3.00 3.50 4.00 4.50 5.00 5.50	2.72 3.17 3.62 4.08 4.53	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18	M M M M F F	261 249 240 232 225 219 214 209	17% 20% 21% 23% 24% 26% 27% 28%	95% 95% 95% 95% 95% 95% 95%	C C C C C M	351 331 313 298 284 272 260	10% 11% 12% 14% 15% 15% 16%	84% 85% 87% 88% 89% 90% 91%	VC VC VC C C	467 448 432 418 407 396 387	4% 5% 5% 6% 6% 7% 7%	73% 76% 78% 79% 81% 82% 83%	XC XC XC XC XC VC	540 522 506 493 482 471 462	3% 3% 3% 4% 4% 4%	65% 67% 70% 71% 73% 74%
	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow	3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @	M M M M F F	261 249 240 232 225 219 214 209 30-06	17% 20% 21% 23% 24% 26% 27% 28% #4027	95% 95% 95% 95% 95% 95% 95% 95% 0-06	C C C C C C C	351 331 313 298 284 272 260 30-06	10% 11% 12% 14% 15% 15% 16% #4028	84% 85% 87% 88% 89% 90% 91% 88-06	VC VC VC C C C	467 448 432 418 407 396 387 30-06	4% 5% 5% 6% 6% 7% 7% #402	73% 76% 78% 79% 81% 82% 83% 90-06	XC XC XC XC VC VC	540 522 506 493 482 471 462 30-06	3% 3% 3% 4% 4% 4% 4%	65% 67% 70% 71% 73% 74% 80-06
	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min	3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @ 200L/Ha	M M M M F F ER8	261 249 240 232 225 219 214 209 30-06 VMD	17% 20% 21% 23% 24% 26% 27% 28% #4027 <141	95% 95% 95% 95% 95% 95% 95% 0-06 <600	C C C C C C C	351 331 313 298 284 272 260 30-06	10% 11% 12% 14% 15% 15% 16% #4028	84% 85% 87% 88% 89% 90% 91% 88-06	VC VC VC C C C	467 448 432 418 407 396 387 30-06	4% 5% 5% 6% 6% 7% 7% #402	73% 76% 78% 79% 81% 82% 83% 90-06	XC XC XC XC VC VC	540 522 506 493 482 471 462 30-06	3% 3% 3% 4% 4% 4% 4%	65% 67% 70% 71% 73% 74% 80-06
	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69	3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10	M M M M F F ER8	261 249 240 232 225 219 214 209 30-06 VMD 316	17% 20% 21% 23% 24% 26% 27% 28% #4027 <141 13%	95% 95% 95% 95% 95% 95% 95% 0-06 <600 92%	C C C C C C M SR8	351 331 313 298 284 272 260 80-06 VMD	10% 11% 12% 14% 15% 15% 16% #4028 <141	84% 85% 87% 88% 89% 90% 91% 38-06 <600	VC VC VC C C C	467 448 432 418 407 396 387 30-06	4% 5% 5% 6% 6% 7% 7% #402	73% 76% 78% 79% 81% 82% 83% 90-06	XC XC XC XC VC VC	540 522 506 493 482 471 462 30-06	3% 3% 3% 4% 4% 4% 4%	65% 67% 70% 71% 73% 74% 80-06
	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80	3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3-12	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11	M M M M F F ER8 Class	261 249 240 232 225 219 214 209 30-06 VMD 316 307	17% 20% 21% 23% 24% 26% 27% 28% #4027 <141 13% 15%	95% 95% 95% 95% 95% 95% 95% 0-06 <600 92% 91%	C C C C C M SRE	351 331 313 298 284 272 260 30-06 VMD	10% 11% 12% 14% 15% 15% 16% #402 <141	84% 85% 87% 88% 89% 90% 91% 38-06 <600	VC VC VC C C C C MR8	467 448 432 418 407 396 387 30-06 VMD	4% 5% 6% 6% 7% 7% #402 <141	73% 76% 78% 79% 81% 82% 83% 90-06 <600	XC XC XC XC VC VC VC DR8 Class	540 522 506 493 482 471 462 30-06 VMD	3% 3% 4% 4% 4% #402 <141	65% 67% 70% 71% 73% 74% 80-06 <60
80	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02	3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3-12 3.5-14	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12	M M M M F F ER8 Class C	261 249 240 232 225 219 214 209 30-06 VMD 316 307 293	17% 20% 21% 23% 24% 26% 27% 28% #4027 <141 13% 15% 17%	95% 95% 95% 95% 95% 95% 95% 0-06 <600 92% 91% 91%	C C C C C M SR8	351 331 313 298 284 272 260 30-06 VMD 439 414	10% 11% 12% 14% 15% 15% 16% #4028 <141 4% 5%	84% 85% 87% 88% 89% 90% 91% 38-06 <600 78% 81%	VC VC VC C C C C C XC	467 448 432 418 407 396 387 30-06 VMD	4% 5% 5% 6% 6% 7% 7% #402 <141	73% 76% 78% 79% 81% 82% 83% 90-06 <600	XC XC XC XC VC VC DR8 Class	540 522 506 493 482 471 462 30-06 VMD	3% 3% 4% 4% 4% #402 <141	65% 67% 70% 71% 73% 74% 80-06 <60
80 -06	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21	3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3-12 3.5-14 3.8-15	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13	M M M M F F ER8 Class C	261 249 240 232 225 219 214 209 30-06 VMD 316 307 293 283	17% 20% 21% 23% 24% 26% 27% 28% #4027 <141 13% 15% 17%	95% 95% 95% 95% 95% 95% 95% 0-06 <600 92% 91% 91%	C C C C C SR8	351 331 313 298 284 272 260 30-06 VMD 439 414 395	10% 11% 12% 14% 15% 16% #4028 <141 4% 5% 6%	84% 85% 87% 88% 89% 90% 91% 38-06 <600 78% 81% 83%	VC VC VC C C C C XC MR8 Class	467 448 432 418 407 396 387 30-06 VMD 520 499	4% 5% 5% 6% 6% 7% 7% #402 <141	73% 76% 78% 79% 81% 82% 83% 90-06 <600 65% 69%	XC XC XC XC VC VC DR8 Class XC	540 522 506 493 482 471 462 30-06 VMD	3% 3% 4% 4% 4% *402 <141 2% 2%	65% 67% 70% 71% 73% 74% 80-06 <60 52% 56%
80	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39	3.00 3.50 4.00 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00 3.50	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3-12 3.5-14 3.8-15 4-16	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3.3-13 3.5-14	M M M M F F ER8 Class C	261 249 240 232 225 219 214 209 30-06 VMD 316 307 293 283 274	17% 20% 21% 23% 24% 26% 27% 28% #4027 <141 13% 15% 17% 19% 21%	95% 95% 95% 95% 95% 95% 95% 0-06 <600 92% 91% 91% 91%	C C C C C C C C C C C C C C C C C C C	351 331 313 298 284 272 260 30-06 VMD 439 414 395 380	10% 11% 12% 14% 15% 15% 4402 <141 4% 5% 6% 7%	84% 85% 87% 88% 89% 90% 91% 38-06 <600 78% 81% 83% 85%	VC VC VC C C C C XC XC XC	467 448 432 418 407 396 387 30-06 VMD 520 499 481	4% 5% 5% 6% 6% 7% 7% 4402 <141 3% 3% 4%	73% 76% 78% 79% 81% 82% 83% 90-06 <600 65% 69% 71%	XC XC XC XC VC VC DR8 Class XC XC XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553	3% 3% 4% 4% 4% 4141 2141 2% 2% 2%	65% 67% 70% 71% 73% 74% 80-06 <600 52% 56% 59%
80 -06	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55	3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00 3.50 4.00	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 3.48	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 1.50L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3-12 3.5-14 3.8-15 4-16 4.3-17	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.5-14 3.8-15	M M M M F F ER8 Class C C C C	261 249 240 232 225 219 214 209 30-06 VMD 316 307 293 283 274 266	17% 20% 21% 23% 24% 26% 27% 28% #4027 <141 13% 15% 17% 19% 21%	95% 95% 95% 95% 95% 95% 95% 0-06 <600 92% 91% 91% 91% 90%	C C C C C C C C C C C C C C C C C C C	351 331 313 298 284 272 260 30-06 VMD 439 414 395 380 367	10% 11% 12% 14% 15% 15% 44023 <141 4% 5% 6% 7% 8%	84% 85% 87% 88% 89% 90% 91% 38-06 <600 78% 81% 83% 85%	VC VC VC C C C C C XC VX XC XC VC	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467	4% 5% 5% 6% 6% 7% 7% 4402 <141 3% 3% 4%	73% 76% 78% 79% 81% 82% 83% 90-06 <600 65% 69% 71% 74%	XC XC XC XC VC VC DR8 Class XC XC XC XC XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539	3% 3% 3% 4% 4% #402 <141 2% 2% 2% 2%	65% 67% 70% 71% 73% 74% 80-06 <600 52% 56% 61%
80 -06	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71	3.00 3.50 4.00 4.50 5.00 5.50 6.00 Boom BAR 1.75 2.00 2.50 3.00 4.00 4.50	2.72 3.17 3.62 4.08 4.53 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 3.48 3.91	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3-12 3.5-14 3.8-15 4-16 4.3-17 4.8-19	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 4-16	M M M M F F ER8 Class C C C C	261 249 240 232 225 219 214 209 30-06 VMD 316 307 293 283 274 266 260	17% 20% 21% 23% 24% 26% 27% 28% #4027 <141 13% 15% 17% 19% 21% 22% 23%	95% 95% 95% 95% 95% 95% 95% 0-06 <600 92% 91% 91% 91% 90%	C C C C C SR8	351 331 313 298 284 272 260 30-06 VMD 439 414 395 380 367 356	10% 11% 12% 14% 15% 16% #4023 <141 4% 5% 6% 7% 8%	84% 85% 87% 88% 89% 90% 91% 38-06 <600 78% 81% 83% 85% 86% 87%	VC VC VC C C C C MR8 Class XC XC XC VC	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454	4% 5% 6% 6% 7% 7% #402 <141 3% 3% 4% 4% 5%	73% 76% 78% 79% 81% 82% 83% 90-06 <600 65% 69% 71% 74% 75%	XC XC XC XC VC VC DR8 Classs XC XC XC XC XC XC XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526	3% 3% 3% 4% 4% 4402 <141 2% 2% 2% 2% 2% 3%	65% 67% 70% 71% 73% 74% 80-06 <600 52% 56% 59% 61% 63%
80 -06	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85	3.00 3.50 4.00 4.50 5.00 5.50 6.00 BOOM BAR 1.75 2.00 2.50 3.00 4.00 4.50 5.00	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 3.48 3.91 4.35	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3.5-14 3.8-15 4-16 4.3-17 4.8-19 5-20	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17	M M M M M M M M M M M M M M M M M M M	261 249 240 232 225 219 214 209 30-06 VMD 316 307 293 283 274 266 260 254	17% 20% 21% 23% 24% 26% 27% 28% #4027 <141 13% 15% 17% 19% 21% 22% 23% 25%	95% 95% 95% 95% 95% 95% 95% 0-06 <600 92% 91% 91% 91% 90% 90% 90%	C C C C C C C C C C C C C C C C C C C	351 331 313 298 284 272 260 30-06 VMD 439 414 395 380 367 356 347	10% 11% 12% 14% 15% 16% #4023 <141 4% 5% 6% 7% 8% 9%	84% 85% 87% 88% 89% 90% 91% 38-06 <600 78% 81% 85% 86% 87%	VC VC VC C C C C XC VXC XC XC VC VC VC	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443	4% 5% 6% 6% 7% 7% 4402 <141 3% 4% 4% 5% 5%	73% 76% 78% 79% 81% 82% 83% 90-06 <600 65% 69% 71% 74% 75% 77%	XC XC XC VC VC DR8 Classs XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 516	3% 3% 4% 4% 44% *402 <141 2% 2% 2% 2% 3% 3%	65% 67% 70% 71% 73% 74% 80-06 <600 52% 56% 61% 63% 64%
80 -06	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85 2.99	3.00 3.50 4.00 4.50 5.00 5.50 6.00 BOOM BAR 1.75 2.00 2.50 3.00 4.00 4.50 5.50	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.61 3.04 3.48 3.91 4.35 4.78	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3-12 3.5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18	M M M M M F F F ER8 Class C C C C C M M M M M M M	261 249 240 232 225 219 214 209 30-06 VMD 316 307 293 283 274 266 260 254	17% 20% 21% 23% 24% 26% 27% 28% #4027 <141 13% 15% 17% 19% 21% 22% 23% 25% 26%	95% 95% 95% 95% 95% 95% 95% 0-06 <600 92% 91% 91% 90% 90% 90%	C C C C C C C C C C C C C C C C C C C	351 331 313 298 284 272 260 30-06 VMD 439 414 395 380 367 356 347 338	10% 11% 12% 14% 15% 16% #4028 <141 4% 5% 6% 7% 8% 9% 10%	84% 85% 87% 88% 89% 90% 91% 38-06 <600 78% 81% 85% 86% 87% 88%	VC VC VC C C C C XC VXC XC XC VC VC VC VC	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433	4% 5% 5% 6% 6% 7% 4402 <141 3% 4% 4% 5% 5%	73% 76% 78% 79% 81% 82% 83% 90-06 <600 65% 69% 71% 75% 77% 78%	XC XC XC XC VC VC DR8 Classs XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 516 506	3% 3% 4% 4% 44% *402 <141 2% 2% 2% 2% 3% 3% 3%	65% 67% 70% 71% 73% 74% 80-06 <600 52% 56% 61% 63% 64% 66%
80 -06	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85 2.99	3.00 3.50 4.00 4.50 5.00 5.50 6.00 BOOM BAR 1.75 2.00 2.50 3.00 3.50 4.00 5.50 6.00	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 3.48 3.91 4.35 4.78 5.22	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3-5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 5.3-21	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 4.8-16 4.8-19	M M M M M M M M M M M M M M M M M M M	261 249 240 232 225 219 214 209 30-06 VMD 316 307 293 283 274 266 260 254 250 245	17% 20% 21% 23% 24% 26% 27% 28% #4027 <141 13% 17% 19% 21% 22% 23% 25% 26% 27%	95% 95% 95% 95% 95% 95% 0-06 <600 92% 91% 91% 91% 90% 90% 90% 90%	C C C C C C C C C C C C C C C C C C C	351 331 313 298 284 272 260 30-06 VMD 439 414 395 380 367 356 347 338 331	10% 11% 12% 14% 15% 16% #4028 <141 4% 5% 6% 7% 8% 9% 9% 10% 10%	84% 85% 87% 88% 89% 90% 38-06 <600 78% 81% 85% 86% 86% 87% 88% 90%	VC VC VC C C C C C XC XC XC VC VC VC VC VC VC	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433 425	4% 5% 5% 6% 7% 7% 4402 <141 3% 3% 4% 4% 5% 5% 6%	73% 76% 78% 79% 81% 82% 83% 90-06 <600 65% 69% 71% 75% 77% 78% 79%	XC XC XC XC XC XC XC XC VC DR8 Class XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 516 506 498	3% 3% 4% 4% 44% <141 2% 2% 2% 2% 3% 3% 3% 3%	65% 67% 70% 71% 73% 74% 80-06 <600 52% 61% 63% 64% 66% 67%
80 -06	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85 2.99 3.12 Flow	3.00 3.50 4.00 4.50 5.50 6.00 BORN 1.75 2.00 3.50 4.50 5.50 6.00 8.00 8.00 9.00	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 3.91 4.35 4.78 5.22	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3-5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 5.3-21	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18	M M M M M F F ER8 Class C C C C C C C M M M M M M M M M M M M	261 249 240 232 225 219 214 209 30-06 VMD 316 307 293 283 274 266 260 254 254 250 245	17% 20% 21% 23% 24% 26% 27% 28% #4027 <141 13% 15% 21% 22% 23% 25% 26% 27% #4027	95% 95% 95% 95% 95% 95% 0-06 <600 92% 91% 91% 90% 90% 90% 90% 0-08	C C C C C C C C C C C C C C C C C C C	351 331 313 298 284 272 260 30-06 VMD 439 414 395 380 367 356 347 338 331 30-08	10% 11% 12% 14% 15% 15% <16% <141 4% 5% 6% 7% 8% 9% 9% 10% 10% #4028	84% 85% 87% 88% 89% 90% 38-06 <600 78% 81% 85% 86% 87% 88% 90% 88% 90% 88%	VC VC VC C C C C C C C C C WR8	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433 425 30-08	3% 3% 4% 4% 4% 5% 5% 5% 6% #402	73% 76% 78% 79% 81% 82% 83% 90-06 <600 65% 69% 71% 75% 77% 78% 79% 90-08	XC XC XC XC VC VC DR8 Class XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 516 506 498 30-08	3% 3% 4% 4% 44% *402 <141 2% 2% 2% 2% 3% 3% 3%	65% 67% 70% 71% 73% 74% 80-06 <600 52% 61% 63% 64% 66% 80-08
80 -06	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85 2.99	3.00 3.50 4.00 4.50 5.00 5.50 6.00 BOOM BAR 1.75 2.00 2.50 3.00 3.50 4.00 5.50 6.00	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 3.48 3.91 4.35 4.78 5.22 Tip	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3.5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm sp 250L/Ha	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.3-17 4.5-18 4.3-17 4.5-18 3.00L/Ha	M M M M M M M M M M M M M M M M M M M	261 249 240 232 225 219 214 209 80-06 VMD 316 293 283 274 266 260 254 30-08 VMD	17% 20% 21% 23% 24% 26% 27% 28% 44027 <141 13% 15% 19% 21% 22% 23% 26% 27% #4027 <141 12%	95% 95% 95% 95% 95% 95% 0-06 <600 92% 91% 91% 90% 90% 90% 90% 0-08	C C C C C C C C C C C C C C C C C C C	351 331 313 298 284 272 260 30-06 VMD 439 414 395 380 367 356 347 338 331 30-08	10% 11% 12% 14% 15% 15% <16% <141 4% 5% 6% 7% 8% 9% 9% 10% 10% #4028	84% 85% 87% 88% 89% 90% 38-06 <600 78% 81% 85% 86% 86% 87% 88% 90%	VC VC VC C C C C C C C C C WR8	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433 425 30-08	3% 3% 4% 4% 4% 5% 5% 5% 6% #402	73% 76% 78% 79% 81% 82% 83% 90-06 <600 65% 69% 71% 75% 77% 78% 79%	XC XC XC XC VC VC DR8 Class XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 516 506 498 30-08	3% 3% 4% 4% 4% 4402 <141 2% 2% 2% 2% 3% 3% 3% 3% #402	65% 67% 70% 71% 73% 74% 80-06 <600 52% 61% 63% 64% 66% 80-08
80 -06	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85 2.99 3.12 Flow L/min	3.00 3.50 4.00 4.50 5.00 6.00 BAR 1.75 2.00 3.50 4.00 5.50 6.00 8.60 6.00 8.60 6.00 8.60 6.00 8.60 6.00 8.60 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 3.91 4.35 4.78 5.22 Tip BAR 1.38	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 3.3-13	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 312 312 3.5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm sp 2.5-20 5.3-21 on 50cm sp 2.5-20 5.3-21 on 50cm sp 2.5-20 5.3-21 on 50cm sp 2.5-20 5.3-21 on 50cm sp	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 acing) @ 300L/Ha 2.2-8.6	M M M M M F F F Class C C C C C C C C C C C C C C C C C C	261 249 240 232 219 214 209 30-06 307 293 283 274 266 260 254 250 245 240 306 800 800 800 800 800 800 800 800 800 8	17% 20% 21% 23% 24% 26% 27% 28% 44027 <141 13% 15% 19% 21% 22% 23% 26% 27% #4027 <141 12%	95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C C C C C C C C C C C C C	351 331 313 298 284 272 260 000 439 414 395 380 367 356 347 338 331 300 800 WMD	10% 11% 12% 14% 15% 16% #402! <141 4% 9% 9% 90% 10% #402! <141	84% 85% 87% 88% 89% 90% 91% 88-06 <600 78% 81% 85% 85% 86% 88% 90% 88-08 <600	VC VC VC C C C C C C C C C C MR8 XC XC VC VC VC VC VC MR8	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433 425 30-08	3% 3% 4% 4% 4% 5% 5% 5% 6% #402	73% 76% 78% 79% 81% 82% 83% 90-06 <600 65% 69% 71% 75% 77% 78% 79% 90-08	XC XC XC XC VC VC DR8 Class XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 516 506 498 30-08	3% 3% 4% 4% 4% 4402 <141 2% 2% 2% 2% 3% 3% 3% 3% #402	65% 67% 70% 71% 73% 74% 80-06 \$ 52% 61% 63% 64% 66% 80-08
80 -06	1.88 2.03 2.17 2.30 2.43 2.54 2.66 E/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85 2.99 3.12	3.00 4.00 4.50 5.00 6.00 Boom BAR 1.75 2.00 4.00 4.50 5.50 6.00 6.	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 4.35 4.78 5.22 Tip BAR 5.22 Tip BAR 5.22	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3.5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm sp 250L/Ha	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.3-17 4.5-18 4.3-17 4.5-18 3.00L/Ha	M M M M M M M M M M M M M M M M M M M	261 249 240 232 225 219 214 209 80-06 VMD 316 293 283 274 266 260 254 30-08 VMD	17% 20% 21% 23% 24% 26% 27% 141 13% 22% 22% 22% 25% #4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	95% 95% 95% 95% 95% 95% 95% 0-06 <600 91% 91% 91% 90% 90% 90% 90% 0-08 <600 88% 89%	C C C C C C C C C C C C C C C C C C C	351 331 298 284 272 260 0-06 VMD 439 414 395 380 367 356 347 338 VMD 529 497	10% 11% 12% 14% 15% 15% <16% <141 4% 5% 6% 7% 8% 9% 9% 10% 10% #4028	84% 85% 87% 88% 89% 90% 38-06 <600 78% 81% 85% 86% 87% 88% 90% 88% 90% 88%	VC VC VC C C C C C C C C C C MR8 XC XC VC VC VC VC VC MR8	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433 425 30-08	3% 3% 4% 4% 4% 5% 5% 5% 6% #402	73% 76% 78% 79% 81% 82% 83% 90-06 <600 65% 69% 71% 75% 77% 78% 79% 90-08	XC XC XC XC VC VC DR8 Class XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 516 506 498 30-08	3% 3% 4% 4% 4% 4402 <141 2% 2% 2% 2% 3% 3% 3% 3% #402	65% 67% 70% 71% 73% 74% 80-06 <600 52% 61% 63% 64% 66% 80-08
80 -06	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 2.02 2.21 2.39 2.55 2.71 2.89 3.12 Flow L/min 2.14 2.29	3.00 3.50 4.00 4.50 5.00 5.50 6.00 BAR 1.75 2.50 3.00 5.50 6.00 8.50 8	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 3.04 4.35 4.78 5.22 Tip BAR 5.22 Tip BAR 5.22	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer 150L/Ha 4.3-17	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 200L/Ha 3.3-13 3.5-14	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3.5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm sp 250L/Ha 2.5-10 2.8-11	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 acing) @ 300L/Ha 2.2-8.6 2.3-9.2	M M M M M M M M M M M M M M M M M M M	261 249 240 232 225 219 214 209 30-06 30-06 307 293 283 274 256 266 260 254 250 245 30-08 30 30-08 30 30-08 30 30-08 30 30-08 30 30-08 30 30-08 30 30 30 30 30 30 30 30 30 30 30 30 30	17% 20% 21% 23% 24% 26% 27% 141 13% 22% 22% 22% 25% #4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 12% 4027 <141 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C C C C C C C C C C C C C	351 331 298 284 272 260 0-06 VMD 439 414 395 380 367 356 347 338 VMD 529 497	10% 11% 12% 14% 15% 15% 16% #402! <141 4% 5% 6% 7% 8% 9% 10% 10% 4402! <141 6%	84% 85% 87% 88% 89% 90% 91% <600 78% 81% 85% 85% 88% 99% 88% 90% 88-08 <600	VC VC VC C C C C MR8 Class XC VC VC VC VC VC C Class	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433 425 30-08 VMD	3% 3% 4% 4% 4% 5% 5% 5% 6% #402	73% 76% 78% 79% 81% 82% 83% 90-06 <600 65% 69% 71% 75% 77% 78% 79% 90-08	XC XC XC XC VC VC DR8 CClass XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 516 506 498 30-08 VMD	3% 3% 4% 4% 4% 4402 <141 2% 2% 2% 2% 3% 3% 3% 3% #402	65% 67% 70% 71% 73% 74% 80-06 <600 52% 61% 63% 64% 66% 80-08
80 -06 Nozzles	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85 2.92 1.80 L/min 2.02 2.21 2.39 2.55 2.71 2.85 2.90 2.55 2.71 2.85 2.90 2.55 2.71 2.85 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.9	3.00 3.50 4.00 5.50 6.00 80 80 81 1.75 2.00 4.50 3.50 4.50 5.50 6.00 80 80 81 1.75 5.00 6.00 80 80 80 80 80 80 80 80 80	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 2.17 2.61 3.04 4.35 4.78 5.22 Tip BAR 5.22 Tip 5.43 5.43 5.43 5.43 5.43 5.43 5.43 5.43	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer 150L/Ha 4.3-17 4.5-18 5.3-21 5.3-21 5.5-22 6-24	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 3.3-13 3.5-14 3.3-13 3.5-14	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3.5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm sp 250L/Ha 2.5-10 2.8-11 3-12	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 300L/Ha 2.2-8.6 2.3-9.2 2.5-10	M M M M M M M M M M M M M M M M M M M	261 249 240 232 225 219 214 209 316 307 293 274 266 260 254 250 250 08 366 349 349 322	17% 20% 21% 23% 24% 26% 27% 28% #4027 2-141 13% 15% 25% 26% 27% 4412 14% 16% 21% 29% 21% 21% 21% 21% 21% 21% 21% 21% 21% 21	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C C C C C C C C C C C C C	351 331 313 298 284 272 260 30-06 VMD 439 380 367 356 347 338 331 30-08 VMD 529 497 470 448	10% 11% 12% 14% 15% 15% 16% #402! <141 4% 5% 6% 7% 8% 10% #402! <141 10% #402! <141 6%	84% 85% 87% 89% 99% 91% 91% 6<600 78% 85% 85% 86% 85% 86% 88% 90% 88-08 <600 51% 55%	VC VC VC C C C C MR8 Class XC VC	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 433 425 30-08 VMD	4% 5% 6% 6% 7% 7% 4402: <141 3% 3% 4% 5% 5% 6% #402: <141	73% 76% 78% 79% 81% 82% 83% 90-06 65% 69% 71% 75% 78% 90-08 <600	XC XC XC XC VC VC DR8 Class XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 516 506 498 30-08 VMD	3% 3% 4% 4% 4% #402 <141 2% 2% 2% 3% 3% 3% 3% 4141	65% 67% 70% 71% 73% 74% 80-06 <600 52% 56% 61% 63% 64% 66% 67% 80-08 <600
80 -06 Nozzles	1.88 2.03 2.17 2.30 2.43 2.56 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.89 3.12 Flow L/min 2.14 2.25 6.25 2.29 3.12 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8.2	3.00 3.50 4.00 5.50 6.00 80 80 81 1.75 2.00 4.50 3.50 4.50 5.50 6.00 80 80 81 1.75 5.00 6.00 80 80 80 80 80 80 80 80 80	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 2.17 2.61 4.38 3.91 4.35 4.78 1.38 1.58 1.58 1.58 1.58 1.59 1.38 1.59 1.38	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer 150L/Ha 4.3-17 4.5-18 5.3-21 5.5-21 5.5-21	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 200L/Ha 3.3-13 3.5-14 4.10	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 312 3.5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm sp 250L/Ha 2.5-10 2.8-11 3.3-12 3.3-12	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 acing) @ 300L/Ha 2.2-8.6 2.3-9.2 2.5-10 2.8-11	M M M M M M M M M M M M M M M M M M M	261 249 240 232 225 219 214 209 316 307 293 274 266 260 254 30-08 VMD 366 349 349 349 322 302	17% 20% 21% 23% 24% 26% 27% 28% #4027 2-141 13% 15% 25% 26% 27% 4412 14% 16% 21% 29% 21% 21% 21% 21% 21% 21% 21% 21% 21% 21	95% 95% 95% 95% 95% 95% 95% 90-06 <600 91% 91% 90% 90% 90% 90% 600 86% 90% 90% 90%	C C C C C C C C C C C C C C C C C C C	351 331 313 298 284 272 260 30-06 VMD 439 380 367 356 347 338 331 30-08 VMD 529 497 470 448	10% 11% 12% 12% 15% 15% 16% 4402! 444 4% 6% 7% 8% 9% 9% 9% 10% 4402! <141 10% 647 7% 88%	84% 85% 87% 89% 99% 91% 6<600 78% 85% 86% 85% 86% 87% 88% 90% 88-06 51% 558% 62%	VC VC VC C C C C C MR8 Classs XC VC	467 448 432 418 407 396 387 30-06 520 499 481 467 454 443 433 30-08 WMD	4% 5% 6% 6% 7% 4402: <141 3% 5% 6% #402: <141 	73% 76% 78% 79% 81% 82% 83% 99-06 <600 65% 74% 74% 75% 77% 99-08 <600	XC XC XC XC VC VC VC DRE Classs XC	540 522 506 493 482 471 462 470 591 570 553 539 526 516 506 498 80-08 VMD	3% 3% 4% 4% 4402 <141 2% 2% 2% 3% 3% 3% 34402 <141	65% 67% 70% 71% 73% 74% 80-06 <600 52% 56% 61% 63% 64% 80-08 <600
80 -06 Nozzles	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 2.02 2.21 2.85 2.71 2.85 2.99 3.12 Flow L/min 2.14 2.29 2.28 1.30 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3.00 3.50 4.00 5.00 6.00 80 80 81 1.75 2.00 4.50 3.50 4.50 6.00 80 80 80 80 80 80 80 80 80	2.72 3.17 3.62 4.08 4.53 4.98 4.53 Tip BAR 1.52 2.17 2.61 3.04 4.35 4.78 1.38 4.78 1.38 1.38 1.39 1.29 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.3	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer 150L/Ha 4.3-17 4.5-18 5.3-21 5.3-21 5.5-22 6-24	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 200L/Ha 200L/Ha 3.3-13 3.5-14 4.3-17 4.5-18	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3-12 3-5-14 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm sp 250L/Ha 2.5-10 2.8-11 3.12 3.3-13 3.8-15	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 2001/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 acing) @ 3001/Ha 2.2-8.6 2.3-9.2 2.5-10 2.8-11 3-12	M M M M M M M M M M M M M M M M M M M	261 249 240 232 225 219 214 209 30-06 WMD 316 260 254 250 260 254 250 30-08 WMD 366 369 349 322 302 285 302 225 272 261	17% 20% 21% 23% 24% 26% 27% 28% #4027 2-141 13% 15% 25% 26% 27% 4412 14% 16% 21% 29% 21% 21% 21% 21% 21% 21% 21% 21% 21% 21	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	C C C C C C C C C C C C C C C C C C C	351 3313 298 284 272 260 30-06 VMD 414 395 380 380 356 347 338 VMD 449 470 448 449 449 4412	10% 11% 12% 12% 15% 15% 16% #402! <141 4% 5% 6% 9% 9% 9% #402! <141 10% 44% 68% 9% 9% 4402! <141 10%	84% 85% 87% 88% 89% 90% 90% 91% 83-06 <600 78% 85% 85% 85% 85% 85% 85% 85% 85% 85% 8	VC VC VC C C C C C C WR8 Class XC VC	467 448 432 418 407 396 VMD 520 499 481 443 433 30-08 VMD 520 499 481 443 443 443 445 444 443 445 446 449 449 449 449 449 449 449 449 449	4% 5% 6% 6% 7% 7% 4402: <141 3% 5% 5% 666 #402: <141	73% 76% 78% 81% 82% 83% 90-06 65% 69% 74% 75% 77% 90-08 8-600	XC XC XC XC VC VC VC DR8 Classs XC	540 522 506 493 482 471 462 30-06 570 553 539 526 516 506 498 30-08	3% 3% 4% 4% 4% 2% 2% 2% 3% 3% 3% 34 440	65% 67% 70% 71% 73% 80-06 <52% 56% 66% 66% 66% 67% 80-08 <555% 55% 55% 55% 55% 55% 55% 55%
80 -06 Nozzles	1.88 2.03 2.17 2.30 2.43 2.56 Flow L/min 1.69 2.02 2.21 2.39 3.12 Flow L/min 2.02 2.21 2.39 3.12 Flow L/min 3.03 3.24	3.00 3.50 4.00 4.00 5.50 5.50 6.00 Boommark 1.75 2.00 3.50 4.00 5.50 6.00 5.50 6.00 3.50 4.00 5.50 6.00 3.50 4.00 5.50 6.00 6.	2.72 3.17 3.62 4.08 4.53 4.98 5.43 Tip BAR 1.52 1.74 4.35 4.38 5.22 Tip BAR 1.38 1.58 1.27 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 8-32 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer 150L/Ha 4.3-17 4.5-18 5.3-21 5.3-21 6.2-24	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 150L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 200L/Ha 3.3-13 3.5-14 4.3-17 4.5-18 4.8-19	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3.5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm sp 250L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.3-13 3.8-15 4-16	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 4.8-19 acing) @ 300L/Ha 2.2-8.6 2.3-9.2 2.5-10 2.8-11 3-12 3.3-13	M M M M M M M M M M M M M M M M M M M	261 249 240 232 225 219 30-06 307 293 316 307 293 274 266 260 245 30-08 309 349 366 349 366 349 362 254 252 253 265 266 267 267 267 267 267 267 267 267 267	17% 20% 21% 24% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25	95% 95% 95% 95% 95% 95% 95% 95% 9600 92% 91% 91% 90% 90% 90% 90% 4600 86% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90	C C C C C C C C C C C C C C C C C C C	351 331 313 298 284 272 260 30-06 VMD 439 414 395 380 367 356 347 338 VMD 529 497 470 448 429 412 397	10% 11% 12% 14% 15% 15% 16% 4402 <141 4% 6% 7% 9% 10% 10% 4402 <141 10% 10% 10% 10% 10% 10% 10% 10% 10%	84% 85% 87% 89% 89% 90% 38-06 <600 81% 83% 85% 86% 87% 88% 89% 90% 81% 66% 66% 66% 69%	VC VC VC C C C C C C WR86 Classs XC VC	467 448 432 418 407 396 520 499 481 467 454 443 433 425 520 499 482 487 467 499 482 484 467 467 467 464 467	4% 5% 6% 6% 7% 4402: <141 3% 5% 6% #402: <141 	73% 76% 78% 78% 81% 82% 83% 83% 6600 65% 69% 71% 75% 77% 78% 90-08 <600	XC XC XC XC XC VC VC DR8 Classs XC	540 522 506 493 482 471 462 30-06 VMD 591 570 553 539 526 498 80-08 VMD	3% 3% 4% 4% 4% 42% 2% 2% 3% 3% 3% 34402 <141	65% 67% 70% 71% 73% 80-06 52% 56% 66% 61% 63% 64% 66% 55% 55% 66% 66% 66% 66% 66% 66% 66
80 -06 Nozzles	1.88 2.03 2.17 2.30 2.43 2.54 2.66 Flow L/min 1.69 1.80 2.02 2.21 2.39 2.55 2.71 2.85 2.93 3.12 Flow L/min 2.14 2.29 2.56 2.81 3.03 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.2	3.00 3.50 4.00 4.50 5.00 5.50 6.00 BAR 1.75 2.00 3.50 6.00 5.50 6.00 5.50 6.00 5.50 6.00 5.50 6.00 5.50 6.00 6	2.72 3.17 3.62 4.08 4.53 4.98 4.53 Tip BAR 1.52 2.17 2.61 3.04 4.35 4.78 1.38 4.78 1.38 1.38 1.39 1.29 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.3	5.8-23 6-24 6.5-26 7-28 7.3-29 7.8-31 Sprayer 125L/Ha 4-16 4.3-17 4.8-19 5.3-21 5.8-23 6-24 6.5-26 6.8-27 7.3-29 7.5-30 Sprayer 150L/Ha 4.3-17 4.5-18 5.3-21 5.5-22 6-24 6.5-26	4.5-18 4.8-19 5.3-21 5.5-22 5.8-23 6-24 6.5-26 Speed (L/Ha 3.3-13 3.5-14 4-16 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6-24 6.3-25 Speed (L/Ha 3.3-13 3.5-14 4.3-17 4.5-18 4.8-19 5.3-21	3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 on 50cm sp 175L/Ha 3-12 3.5-14 3.8-15 4-16 4.3-17 4.8-19 5-20 5.3-21 on 50cm sp 250L/Ha 2.5-10 2.8-11 3.3-12 3.3-13 3.8-15 4-16 4.3-17	3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.3-17 4.5-18 acing) @ 200L/Ha 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 acing) @ 300L/Ha 2.2-8.6 2.3-9.2 2.5-10 2.8-11 3-12 3.3-13 3.5-14	M M M M M M M M M M M M M M M M M M M	261 249 240 232 225 219 20-06 307 293 316 307 293 283 274 266 260 245 30-2 254 322 255 245 30-2 245 322 255 267 245 322 272 267 267 272 272 272 272 274 274 275 276 277 277 277 277 277 277 277 277 277	17% 20% 21% 24% 25% 25% 25% 25% 25% 25% 25% 25% 25% 25	95% 95% 95% 95% 95% 95% 95% 95% 95% 9600 92% 91% 91% 90% 90% 90% 90% 90% 90% 90% 90% 90% 90	C C C C C C C C C C C C C C C C C C C	351 3313 298 284 272 260 30-06 VMD 439 414 395 356 347 VMD 529 497 470 470 448 448 429 412 393 383	10% 11% 11% 12% 14% 15% 15% 4402! <141 5% 8% 9% 10% 4402! <141 6% 7% 8% 9% 10% 10% 11% 11%	84% 85% 87% 88% 89% 90% 90% 91% 83-06 <600 78% 85% 85% 85% 85% 85% 85% 85% 85% 85% 8	VC VC VC C C C C C MRR Classs XC VC	467 448 432 418 407 396 387 30-06 VMD 520 499 481 467 454 443 30-08 VMD 520 499 482 467 454 442	4% 5% 6% 6% 6% 7% #402! <141 3% 4% 4% 5% 6% #402! <141 7% 8% 9% 9% 10%	73% 76% 78% 78% 81% 82% 81% 83% 90-06 <6500 65% 77% 77% 690-08 <6600 66% 774% 774%	XC XC XC VC VC DR8 Classs XC	540 522 506 493 482 471 462 462 591 570 553 539 526 516 506 498 30-08 VMD	3% 3% 4% 4% 4% 2% 2% 2% 2% 2% 24 3% 3% 34 402 4141	65% 67% 70% 70% 71% 80-06 <600 552% 63% 64% 66% 67% 80-08 <600

NOTE: ¹SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. ²Shown application information is based on water @ 26.5°C in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 80° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

Fine (F) ASABE Spray Classification (ASABE S5/2.1 Standard)

Spray quality is categorized based on DvD.1 and VMD droplet sizes.

Objective testing data (by 3rd party), from paray spectrum recording equipment (without wind tunned use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.) can vary between testing equipment and method, and is provided as an educational resource only.

Extremely Coarse (XC)

Ultra Coarse (UC)

Ultra Coarse (UC) ASABE Spray Classification (ASABE S572.1 Standard)

VMD (Volume Median Diameter) sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141µ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially

% <600 μ (% of Small Droplets) % of volume which is made up of small' droplets, useful for coverage As % of useful droplets lowers, overall coverage is reduced

	Flow	Boom	Tip	Sprayer	Speed (L/Ha	on 50cm spa	acing) @	ER8	0-10	#402	70-10	SR8	80-10	#4028	88-10	MR8	30-10	#402	90-10	DR8	0-10	#4028	80-10
	L/min	BAR	BAR	200L/Ha	250L/Ha	300L/Ha	350L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
	2.71	2.00	1.41	4-16	3.3-13	2.8-11	2.3-9.3	XC	455	9%	78%												
	3.03	2.50	1.77	4.5-18	3.8-15	3-12	2.5-10	XC	425	11%	80%	UC	534	6%	51%								
80	3.32	3.00	2.12	5-20	4-16	3.3-13	2.8-11	XC	402	12%		UC	508	7%	56%								
-10	3.58	3.50	2.47	5.5-22	4.3-17	3.5-14	3-12	VC	383		83%		487	7%	60%			6%	65%	UC	593	5%	55%
Nozzles	3.83		2.82	5.8-23	4.5-18	3.8-15	3.3-13	С	368	14%		XC	468	8%	63%	UC		6%	67%	UC	580	5%	57%
	4.06	4.50	3.18	6-24	5-20	4-16	3.5-14	С	355	15%	85%	XC	452	8%	66%	UC	497	7%	69%	UC	569	6%	59%
	4.28	5.00	3.53	6.5-26	5.3-21	4.3-17	3.8-15	С	344	16%	86%	XC	437	9%	68%	UC	486	7%	70%	UC	559	6%	61%
	4.49	5.50	3.88	6.8-27	5.5-22	4.5-18	3.8-15	M	334	17%	87%	XC	424	9%	70%	XC	476	7%	72%	UC		6%	62%
	4.69	6.00	4.24	7-28	5.8-23	4.8-19	4-16	M	325	18%	87%	XC	412		71%	XC	467	8%	73%				63%
	Flow	Boom	Tip		Speed (L/Ha)-125	#4027						MR8				DR8		#4028	
	L/min	BAR	BAR	250L/Ha	300L/Ha	350L/Ha	400L/Ha		VMD		<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
	3.14	2.00	1.21	3.8-15	3.3-13	2.8-11	2.4-9.4	XC	474	8%	74%											\vdash	\vdash
	3.51	2.50	1.52	4.3-17	3.5-14	3-12	2.8-11	XC	447	10%	77%											\vdash	—
80	3.84	3.00	1.82	4.5-18	3.8-15	3.3-13	3-12	XC	427	11%	79%			6%	52%							\vdash	
-125	4.15	3.50	2.12	5-20	4.3-17	3.5-14	3-12	XC	410	11%		UC	506	7%	56%			001	500/			\vdash	
Nozzles	4.44	4.00	2.42	5.3-21	4.5-18	3.8-15	3.3-13	VC	396	12%		UC	490	8%	58%			6%	58%	UC	608	4%	52%
	4.71	4.50	2.73	5.8-23	4.8-19	4-16	3.5-14	VC	384	13%	83%	XC	476	8%	61%			6%	60%	UC	596	5%	54%
	4.96	5.00	3.03	6-24	5-20	4.3-17	3.8-15	C	374	13%		XC	463	9%	63%		547	7%	62%		586	5%	55%
	5.20	5.50	3.33	6.3-25	5.3-21	4.5-18	4-16		365	14%		XC	451	9%	64%			7%	63%	UC	577	5%	57%
	5.43	6.00	3.64	6.5-26	5.5-22	4.8-19	4-16	С	357	14%		XC	441	9%	66%	UC		7%	64% 90-15	UC		5%	58%
	Flow L/min	Boom BAR	Tip BAR	300L/Ha	Speed (L/Ha 400L/Ha	450L/Ha	500L/Ha	ER8	VMD	#4027 <141	<600	Close	80-15 VMD	<141	88-15 <600	Class	30-15 VMD	<141	<600	Class	0-15 VMD	#4028 <141	<600
	3.88	2.50	1.29	4-16	3-12	2.5-10	2.3-9.3	XC	473	7%	76%	Ulass	VIVID	<141	<000	Ulass	VIVID	<141	<000	Class	VIVID	<141	<000
	4.26	3.00	1.55	4.3-17	3.3-12	2.8-11	2.5-9.5	XC	448	8%	77%											\vdash	
80	4.60	3.50	1.81	4.5-17	3.5-13	3-12	2.8-11	XC	428	9%	78%	IIC	570	5%	44%								
-15	4.91	4.00	2.07	5-20	3.8-15	3.3-13	3-12	XC	412	10%		UC	554	6%	47%								
Nozzles	5.21	4.50	2.32	5.3-21	4-16	3.5-14	3.3-13	XC	398	11%		UC	540	6%	50%	LIC	499	8%	68%	UC	624	3%	50%
14022100	5.49	5.00	2.58	5.5-22	4-16	3.8-15	3.3-13		386		81%		527	6%		UC	487	8%	69%		612	3%	52%
	5.76	5.50	2.84	5.8-23	4.3-17	3.8-15	3.5-14		376		81%		516	6%	54%	XC	477	9%	71%	UC		3%	54%
	6.02	6.00	3.10	6-24	4.5-18	4-16	3.5-14	C	366	13%			505	7%	56%	XC	467	9%	72%	UC		4%	55%
	Flow	Boom	Tip	Sprayer	Speed (L/Ha	on 50cm spa		ER8		#402			30-20	#4028			30-20		90-20		0-20	#4028	
	L/min	BAR	BAR	400L/Ha	500L/Ha	600L/Ha	700L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
	5.22	3.50	1.31	4-16	3.3-13	2.5-10	2.3-9	UC	518	6%	66%												
80	5.59	4.00	1.50	4.3-17	3.3-13	2.8-11	2.4-9.6	UC	500	7%	68%												
-20	5.92	4.50	1.69	4.5-18	3.5-14	3-12	2.5-10	UC	485	8%	70%		577	5%	43%								
Nozzles	6.24	5.00	1.88	4.8-19	3.8-15	3-12	2.8-11	XC	472	8%	72%	UC	563	5%	46%								
	6.55	5.50	2.06	5-20	4-16	3.3-13	2.8-11	XC	461	9%	73%	UC	551	5%	48%								
	6.84	6.00	2.25	5.3-21	4-16	3.5-14	3-12	XC	450	9%	74%	UC	540	6%	50%	UC	552	5%	60%	UC	616	3%	52%

NOTE: 1SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. Shown application information is based on water @ 26.5°C in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 110° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE S572.1 Standard)
Spray quality is categorized based on DV0.1 and VMD droplet sizes.

Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunnel color)
use), has been used to classify spray quality for this chart. Extra data (e. y MMD, etc.) can vary between testing equipment and method, and is provided as an educational resource only.

VMD (Volume Median Diameter) The median droplet (in μ) for a sprayed volume. Half of the volume is made of droplets smaller, with

% <141µ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray

% <600µ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage. As % of useful droplets lowers,

between Tips sized up to	testing equ 110-06 verifie	ipment an d on Phase	d method, Doppler Part	and is provided icle Analyzer (PDPA)	as an education); tips sized over 11	al resource only. 0-06 verified on M							up of dr						serveu s substanti				overage		
Nozzle	Flow	Boom	Tin	Applic	cation Rate	in Litres/He	ectare			Spray	Classi	ficatio	n; VM[) (Drop	let Size	in µ	; %<1	41μ (D	rift %);	%<6	00µ (S	mall D	roplets)	
Size & Angle	Rate L/min	BAR	Tip psi		n 50cm No			Close		° Serie		Class		° Serie)° Serie		Class		° Serie			Series
Aligie	Flow	Boom	Tip		Sprayer Speed (L/Ha o			Class ER1	VMD 10-01		81-01	UldSS	VIVID	<141	<000	UIdSS	VIVID	<141	<600	UldSS	VIVID	<141	<000	UldSS	VMD
	L/min	BAR	BAR	20L/Ha	30L/Ha	40L/Ha	50L/Ha	Class	VMD	<141	<600														
	0.279	1.50 1.75	1.49	4.3-17 4.5-18	2.8-11 3-12	2.1-8.4 2.3-9	1.7-6.7 1.8-7.2	F	147 143		100% 100%								& Spe						ŀ
110	0.322		1.99	4.8-19	3.3-13	2.4-9.7	1.9-7.7	F	140		100%								/M solen le, often						
-01	0.360		2.49	5.5-22 6-24	3.5-14	2.8-11	2.2-8.6	F	135		100%	Ш			providing	flexib	ility for ı	ipper sp	eed & tu	ming s	situation	s, as wel			
Nozzles	0.394 0.426	3.50	2.99 3.49	6.5-26	4-16 4.3-17	3-12 3.3-13	2.4-9.5 2.5-10	F	131 128		100% 100%	┝			Spe	eus. II	IS HOL a	uviseu t	o spray b	elow 4	10% dul	y cycle.			_
	0.455		3.98	6.8-27	4.5-18	3.5-14	2.8-11	F	125		100%								ed Ch						
	0.483		4.48 4.98	7.3-29 7.8-31	4.8-19 5-20	3.5-14 3.8-15	3-12 3-12	F	122 120		100% 100%		factor b	ger printe based on	ed charts the spra	s, typic ayers t	ally a Si ravel sp	eed. To	NGE is p calculat	rovide e a d i	a, but th I ty cycl	e duty cy e at a g i	ycie % is iven tra	vel spe	eed,
	0.534	5.50	5.48	8-32	5.3-21	4-16	3.3-13	F	118	67%	100%				divid				speed ir max =				i.		
	0.557	6.00 Boom	5.98 Tip	8.3-33 Sprayor S	5.5-22 peed (L/Ha	4.3-17	3.3-13	F ED11	116		100%	CD11	0.015	#4028	7 015				1-015				6 015		
	Flow L/min	BAR	BAR	35L/Ha	50L/Ha	60L/Ha	75L/Ha	Class		<141		Class		<141					<600	Class		<141			
	0.417	1.50	1.49	3.5-14	4.3-17	2.1-8.3	1.7-6.7	F	151	42%	100%		005												
110	0.450 0.481	1.75 2.00	1.73	3.8-15 4.3-17	2.8-11 3-12	2.3-9 2.4-9.6	1.8-7.2 1.9-7.7	F	148 145		100% 100%		225 218	21% 23%	98% 98%	С	323	11%	94%	С	368	7%	92%		
-015	0.538	2.50	2.48	4.5-18	3.3-13	2.8-11	2.2-8.6	F	141	50%	100%		205	27%	98%	С	298	14%	96%	С	346	8%	93%		
Nozzles	0.590 0.637	3.00	2.97 3.47	5-20 5.5-22	3.5-14 3.8-15	3-12 3.3-13	2.4-9.4 2.5-10	F	137 134		100% 100%	F	195 187	29% 32%	98% 98%	C M	279 262	16% 18%	97% 98%	C	329 315	10% 11%	94%		
	0.681	4.00	3.96	5.8-23	4-16	3.5-14	2.8-11	F	132	57%	100%	F	180	34%	98%	M	248	20%	98%	С	302	12%	95%		
	0.722		4.46	6.3-25	4.3-17	3.5-14	3-12	F	129		100%	F	173	36%	98%	M F		23%	99%	C	282	14%	96%		
	0.761 0.798	5.00 5.50	4.96 5.45	6.5-26 6.8-27	4.5-18 4.8-19	3.8-15 4-16	3-12 3.3-13	F	127 125		100% 100%	F	167 162	37% 39%	98% 98%	F	217 209	24% 25%	99% 99%	M	273 265	15% 15%	96% 97%		
	0.834	6.00	5.95	7.3-29	5-20	4.3-17	3.3-13	F	124	64%	100%	F	157	40%	98%	F	195	27%	100%	M	252	17%	97%		
	Flow L/min	Boom BAR	Tip BAR	Sprayer S 40L/Ha	peed (L/Ha 50L/Ha	on 50cm s 60L/Ha	pacing) @ 70L/Ha	Class	10-02 VMD		81-02 <600	SR1	10-02 VMD	#4028 <141	87-02 <600	MR1 Class	10-02 VMD	#402 <141	91-02 <600	DR1	10-02 VMD	#402 <141			
	0.554	1.50	1.47	4.3-17	3.3-13	2.8-11	2.4-9.5	F	171	33%	100%	Cidoo	VIVID	XITI.	\000	Oldoo	VIVID	X171	\0000	Oldoo	VIVID	X171	\0000		
110	0.598 0.639	1.75	1.72	4.5-18 4.8-19	3.5-14 3.8-15	3-12 3.3-13	2.5-10 2.8-11	F	166 161		100% 100%	N/I	221	22%	99%	С	317	11%	95%	VC	433	5%	82%	\vdash	
-02	0.039	2.50		5.3-21	4.3-17	3.5-13	3-12	F	154		100%		211	25%	99%	C	297	13%	96%	VC	412	6%	85%		
Nozzles	0.783		2.95	5.8-23	4.8-19	4-16	3.3-13	F	148		100%		203	27%	99%	С	281	15%	97%	VC	394	6%	87%	\square	
	0.846 0.904		3.44	6.3-25 6.8-27	5-20 5.5-22	4.3-17 4.5-18	3.5-14 3.8-15	F	144 139		100% 100%		196 190	29% 30%	99% 99%	M	267 256	17% 18%	97% 97%	C	378 364	7% 8%	88% 90%		
	0.959	4.50	4.42	7.3-29	5.8-23	4.8-19	4-16	F	136	54%	100%	F	185	32%	99%	M	237	21%	98%	С	339	9%	91%		
	1.011 1.060			7.5-30 8-32	6-24 6.3-25	5-20 5.3-21	4.3-17 4.5-18	F	132 129		100% 100%	F	180 176	33% 34%	99% 99%	M	229 222	22%	98% 98%	C	328 318	10% 10%		\vdash	
	1.107	6.00	5.90	8.3-33	6.8-27	5.5-22	4.8-19	F	126		100%	F	172	35%	99%	F	210	25%	99%	Č	299	11%			
	Flow	Boom	Tip		peed (L/Ha				10-025		31-025		0-025				10-025		1-025		10-025		6-025		10-025
	L/min 0.689	1.50	1.46	50L/Ha 4.3-17	60L/Ha 3.5-14	70L/Ha 3-12	80L/Ha 2.5-10	Class F	193	<141 28%	<600 100%	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600		VMD 92-025
140	0.744	1.75	1.71	4.5-18	3.8-15	3.3-13	2.8-11	F	190	29%	100%		000	100/	000/	0	050	001	000/	V/O-	407	F0/	700/		
110 -025	0.796 0.890	2.00	1.95 2.44	4.8-19 5.3-21	4-16 4.5-18	3.5-14 3.8-15	3-12 3.3-13	F	187 183		100% 100%		239 228	19% 21%	98% 98%	C	353 337	8% 10%	90%	VC VC	437 418	5% 6%	79% 83%	UC	568
Nozzles	0.974	3.00	2.92	5.8-23	4.8-19	4.3-17	3.8-15	F	179	30%	100%	M	219	23%	98%	С	322	11%	93%	VC	401	6%	86%	UC	546
	1.053 1.125	3.50 4.00	3.41	6.3-25 6.8-27	5.3-21 5.8-23	4.5-18 4.8-19	4-16 4.3-17	F	177 174		100% 100%	F	212 205	25% 26%	98% 98%	C	310 299	12% 13%	94%	C	386 373	7% 8%	88% 89%	UC	526 509
	1.193	4.50	4.39	7.3-29	6-24	5-20	4.5-18	F	172		100%	F	200	28%	98%	С	280	15%	96%	С	350	9%	91%	XC	478
	1.258		4.87	7.5-30	6.3-25	5.5-22	4.8-19	F	170		100%	F	195	29%	98%	C	271	16%	96%	C	340	9%	92%	XC	465
	1.319 1.378		5.36 5.85	8-32 8.3-33	6.5-26 7-28	5.8-23 6-24	5-20 5.3-21	F	168 166		100%	F	190 186	30% 31%	98% 98%	M	263 249	16% 18%	96% 97%	C	331 314	10% 10%	93%	XC	453 431
	Flow	Boom	Tip	Sprayer S	peed (L/Ha	on 50cm s	pacing) @		10-03	#402	81-03		10-03	#4028	87-03	MR1	10-03	#402	91-03	DR1	10-03	#402	86-03	UR11	10-03
	L/min 0.822	BAR 1.50	BAR 1.45	60L/Ha 4-16	75L/Ha 3.3-13		120L/Ha 2.1-8.2					Class	VIVID	<141	<600	Class	VIVID	<141	<600	Class	VIVID	<141	<600		VMD 292-03
	0.888	1.75	1.69	4.5-18	3.5-14	2.8-11	2.2-8.9	F	191	29%	99%		321	9%	94%										
110 -03	0.950 1.062			4.8-19 5.3-21	3.8-15 4.3-17	2.8-11 3.3-13	2.4-9.5 2.8-11	F	186 178		99% 98%		309 290	11%	94% 95%	VC C	403 376		85% 89%	XC	488 460	3% 4%	72% 77%	IIC	612
Nozzles	1.163	3.00	2.89	5.8-23	4.8-19	3.5-13	3-12	F	172		98%		275		96%	С	354		91%	VC		5%	81%	UC	581
	1.256			6.3-25	5-20	3.8-15	3.3-13	F	166		98%	M	262	17%	97%	С		10%	93%	VC	417		84%		555
	1.343 1.424			6.8-27 7-28	5.3-21 5.8-23	4-16 4.3-17	3.3-13 3.5-14	F	161 157		97% 97%	M		18% 20%	97%	C		12%	94% 95%	C	400 385		86% 87%	UC	533 513
	1.502	5.00	4.82	7.5-30	6-24	4.5-18	3.8-15	F	153	41%	97%	M	231	21%	98%	С	292	13%	95%	С	372	7%	88%	UC	495
	1.575 1.645			7.8-31 8.3-33	6.3-25 6.5-26	4.8-19 5-20	4-16 4-16	F	150 147		97% 96%				98% 98%				96% 96%	C	359 348		89% 90%		479 464
	1.045	0.00	J./9	0.0-00	0.5-20	J-20	4-10		147	4370	3070		410	LJ70	3070	IVI	2/0	1470	3070	U	J40	070	3070	_ AU	404

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. 'Shown application information is based on water @ 26.5°C in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 110° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Duty Cycle (Effective 'on time' of solenoid)

The duty cycle is the effective 'on time' of a PVMM solenoid. Generally speed ranges are based on a 25% - 100% duty cycle. When selecting a nozzle, often a duty cycle of 60-80% is recommended at typical speeds, providing flexibility for upper speed & turning situations, as well as slower spraying speeds. It is not advised to spray below 40% duty cycle.

Calculating Duty Cycle on Printed Charts (Useful for nozzle sizing & selection)
On Wilger printed charts, typically a SPEED RANGE is provided, but the duty cycle % is a dynamic factor
based on the sprayers travel speed. To calculate a duty cycle at a given travel speed, divide
CURRENT sprayer speed into max nozzle speed. (e.g. 15mph / 20mph max = 75% duty cycle)

upper spe	cou ox luifil	ny situai	ions, ds	s well as slowe	a spraying Spr	ccus. Il 15 1101	. αυνιδεύ το Spi	ау ие	101/1 40%	uuty CyC	JIC.	GUI	INENI S	opi dyer	speea i	iito III	ax 11022	ie shee	u. (e.y.	romp	ii / ZUM	hii uigx	= /5%	uuty C	ycie)
	Flow	Boom	Tip		Speed (L/Ha			ER1	10-04						87-04				91-04	DR1	10-04		86-04	0.	10-04
	1.168	1.75	1.64	75L/Ha 4.8-19	100L/Ha 3.5-14	125L/Ha 2.8-11	150L/Ha 2.3-9.3	Class	234	<141 20%	<600 97%	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD 92-04
110	1.248	2.00	1.87	5-20	3.8-15	3-12	2.5-3.3	M	229	21%	97%	С	322	10%	93%	VC	429	4%	82%	XC	524	3%	66%	UC	660
-04	1.396	2.50	2.34	5.5-22	4.3-17	3.3-13	2.8-11	M	221	23%	97%	Č	303	12%	94%		399	6%	87%	XC	492	4%	72%	UC	626
Nozzles	1.529	3.00	2.81	6-24	4.5-18	3.8-15	3-12	F	214	24%	96%	C	287	14%	95%	C	374	7%	90%	VC	467	4%	76%	UC	598
	1.651	3.50	3.28	6.5-26	5-20	4-16	3.3-13	F	208	26%	96%	С	273	15%	96%		353	8%	92%	VC	445	5%	79%	UC	575
	1.765 1.872	4.00 4.50	3.75 4.22	7-28	5.3-21 5.5-22	4.3-17 4.5-18	3.5-14 3.8-15	F	203 199	27%	96% 96%	M	262 251	17% 18%	96%	C	335 319	9% 10%	93%	VC VC	426 410	5% 6%	81% 83%	UC	554 536
	1.974	5.00	4.69	8-32	6-24	4.8-19	4-16	Ė	195	29%	96%	M	242	19%	97%	C	304	10%	95%	C	395	6%	85%	UC	520
	2.070	5.50	5.15	8.3-33	6.3-25	5-20	4.3-17	F	191	30%	95%	M	234	19%	97%	Č	291	11%	95%	C	381	7%	86%	UC	506
	2.162	6.00	5.62	8.8-35	6.5-26	5.3-21	4.3-17	F	188	30%	95%	M	226	20%	97%	С	280	11%	96%	С	369	7%	87%	UC	493
	Flow L/min	Boom BAR	Tip BAR	Sprayer S 100L/Ha	Speed (L/Ha 125L/Ha	on 50cm s 150L/Ha	spacing) @ 175L/Ha	ER1	10-05 VMD		81-05 <600		10-05 VMD	#402 <141	87-05 <600		10-05		91-05 <600		10-05 VMD		86-05 <600		10-05 VMD
	1.43	1.75	1.59	4.3-17	3.5-14	2.8-11	2.5-9.8	M	241	19%	95%	Ulass	VIVID	< 141	<000	Ulass	VIVID	<141	<000	Class	VIVID	<141	<000		92-05
	1.53	2.00	1.81	4.5-18	3.8-15	3-12	2.8-11	M	234	21%	95%	С	371	7%	90%									" 102	02 00
110	1.72	2.50	2.26	5.3-21	4-16	3.5-14	3-12	M	224	23%	95%	С	345	9%	92%		473	4%	74%	XC	522	2%	65%		
-05	1.88	3.00	2.72	5.8-23	4.5-18	3.8-15	3.3-13	F	215	26% 27%	95%	C	324	11%	93%	VC VC	447 424	5%	78%	XC	505 490	3%	68%	UC	622
Nozzles	2.03	3.50 4.00	3.17 3.62	6-24	4.8-19 5.3-21	4-16 4.3-17	3.5-14 3.8-15	F	207	29%	95% 95%	C	306 291	12% 14%	94%		405	5% 6%	81% 83%	XC	478	3%	70% 72%	UC	603 586
	2.30	4.50	4.08	7-28	5.5-22	4.5-18	4-16	F	195	30%	95%	Č	277	15%	96%		388	7%	84%	XC	467	3%	74%	UC	571
	2.43	5.00	4.53		5.8-23	4.8-19	4.3-17	F	190	31%	95%	M	265	16%	96%	C	373	7%	86%	VC	457	4%	75%	UC	559
	2.54	5.50	4.98	7.8-31	6-24	5-20	4.3-17	F	185	32%	95%	M	254	17%	97%	C	359	7%	87%	VC	448	4%	77%	UC	548
	2.66 Flow	6.00 Boom	5.43 Tip	8-32 Sprayer S	6.5-26 Speed (L/Ha	0n 50cm s	4.5-18	_	181 10-06	33%	95% 81-06	SR1	244 10-06	17% #402	97% 87-06	C MR1	346 10-06	8% #402	88% 91-06	VC DR1	440 10-06	4% #402	78% 86-06	UC UR11	538 10-06
	L/min	BAR	BAR	125L/Ha	150L/Ha	175L/Ha	200L/Ha	Class			<600							<141			VMD		<600		VMD
	1.69	1.75	1.52	4-16	3.3-13	3-12	2.5-10	С	277	15%	94%														92-06
	1.80	2.00	1.74	4.3-17	3.5-14	3-12	2.8-11	M	270	16%	94%	VC	443	4%	80%	VC	E00	20/	600/	VC	EEO	00/	E00/		
110	2.02	2.50 3.00	2.17 2.61	4.8-19 5.3-21	4-16 4.5-18	3.5-14	3-12 3.3-13	M	258 249	18%	94%	VC C	408 380	6% 8%	85%		502 481	3% 4%	69% 73%	XC	559 536	2%	58% 63%	UC	641
-06	2.39	3.50	3.04	5.8-23	4.8-19	4-16	3.5-14	M	241	21%	95%	Č	356	9%	90%		463	4%	76%	XC	517	3%	66%	UC	620
Nozzles	2.55	4.00	3.48	6-24	5-20	4.3-17	3.8-15	M	234	22%	95%	С	335	10%	92%	VC	447	4%	78%	XC	500	3%	68%	UC	602
	2.71	4.50	3.91	6.5-26	5.5-22	4.8-19	4-16	M	228	23%	95%	C	317	11%	93%		434	5%	80%	XC	485	3%	70%	UC	587
	2.85	5.00 5.50	4.35 4.78	6.8-27 7.3-29	5.8-23 6-24	5-20 5.3-21	4.3-17 4.5-18	M F	223 218	24%	95% 95%	C	301 286	12% 13%	94%	VC VC	422 411	5% 5%	82% 83%	XC	472 460	3%	72% 73%	UC	573 562
	3.12	6.00	5.22	7.5-30	6.3-25	5.3-21	4.8-19	F	213	26%	95%		272	14%	95%	C	400	5%	84%	VC	449	4%	75%	UC	551
	Flow	Boom	Tip	Sprayer S	Speed (L/Ha	on 50cm s	spacing) @	ER1	10-08	#4028	81-08	SR1	10-08	#402	87-08	MR1	10-08	#402	91-08	DR1	10-08	#402	86-08	UR11	10-08
	L/min	BAR	BAR	150L/Ha	200L/Ha	250L/Ha	300L/Ha	Class	VMD			Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600		
	2.14	1.75 2.00	1.38 1.58	4.3-17 4.5-18	3.3-13 3.5-14	2.5-10 2.8-11	2.2-8.6	C	327 315	14%	91% 92%	IIC	494	4%	58%									#402	92-08
	2.56	2.50	1.97	5.3-21	3.8-15	3-12	2.5-10	C	295	17%	93%	XC	460	6%	65%	UC	539	4%	51%	UC	622	3%	39%		
110	2.81	3.00	2.37	5.5-22	4.3-17	3.3-13	2.8-11	С	278	19%	94%	XC	432	7%	70%	UC	509	5%	57%	UC	593	3%	44%	UC	678
-08	3.03	3.50	2.76	6-24	4.5-18	3.8-15	3-12	M	264	20%	95%		408	7%	74%		483	5%	61%	UC	569	4%	47%	UC	651
Nozzles	3.24	4.00 4.50	3.16 3.55	6.5-26 7-28	4.8-19 5.3-21	4-16 4.3-17	3.3-13	M	252 241	21%	95% 96%	XC VC	388 369	8% 9%	77%	XC	461 441	6% 6%	65% 67%	UC	548 530	4% 4%	50% 52%	UC	628 609
	3.62	5.00	3.95		5.5-22	4.3-17	3.5-14	M	232	23%	96%		353	9%	81%	XC	424	6%	69%	UC	513	4%	54%	UC	593
	3.80	5.50	4.34	7.5-30	5.8-23	4.5-18	3.8-15	F	223	24%	96%	С	339	10%	83%	XC	408	7%	71%	UC	498	4%	56%	UC	578
	3.97	6.00	4.74		6-24 peed (L/Ha	4.8-19 on 50cm s	4-16 spacing) @	F ER1	215 10-10	25%	96% 31-10		325 10-10	11% #402	84% 87-10	XC	394 10-10	7% #402	73% 91-10	UC	485 10-10	5% #402	57% 86-10	UC UR11	565 10-10
	Flow L/min	Boom BAR	Tip BAR	Sprayer S 200L/Ha	250L/Ha	300L/Ha	350L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD
	2.71	2.00	1.41	4-16	3.3-13	2.8-11	2.3-9.3	VC	360	10%	88%	O I CO CO			1000	Oidoo			1000	Jidoo			1000	#402	92-10
440	3.03	2.50	1.77	4.5-18	3.8-15	3-12	2.5-10	C	339	12%		UC		5%	57%	l la		40/	500/	u o		===	500/		
110 -10	3.32 3.58	3.00	2.12 2.47	5-20 5.5-22	4-16 4.3-17	3.3-13 3.5-14	2.8-11 3-12	C	322 308	14%	91% 91%	XC	467 442	6% 7%	63%	UC	520 495	4% 5%	53% 57%	UC	607 594	5% 5%	58% 56%	UC	678
Nozzles	3.83	4.00	2.82	5.8-23	4.5-18	3.8-15	3.3-13	C	296	17%	92%	XC	420	8%	71%		474	5%	60%	UC	582	5%	54%	UC	654
	4.06	4.50	3.18	6-24	5-20	4-16	3.5-14	С	285	18%	92%	XC	401	8%	74%	XC	455	5%	62%	UC	572	5%	52%	UC	633
	4.28	5.00	3.53		5.3-21	4.3-17	3.8-15	M	275	19%	93%	XC	384	9%	76%	XC	438	6%	65%	UC	563	6%	51%	UC	616
	4.49 4.69	5.50 6.00			5.5-22 5.8-23	4.5-18 4.8-19	3.8-15 4-16	M	266 258		93% 94%		368 354	9%	78%		423 409	6%	66% 68%	UC	555 548	6% 6%	49% 48%	UC	600 586
	Flow	Boom					spacing) @																	UU	000
1	L/min	BAR	BAR	250L/Ha	300L/Ha	350L/Ha	400L/Ha	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600		
	3.51 3.84	2.50 3.00			3.5-14	3-12	2.8-11 3-12	XC			67%		500	10/	52%		-	-			-	-	-		
110	4.15	3.50			3.8-15 4.3-17	3.3-13 3.5-14	3-12	XC			74%		523 492	4% 4%	58%	UC	638	4%	36%	UC	661	3%	33%		
-125	4.44	4.00			4.5-18	3.8-15	3.3-13	XC			77%				63%	UC	614	4%	40%		645	3%	35%]	
Nozzles	4.71	4.50			4.8-19	4-16	3.5-14	VC	369		79%				66%			4%			630	4%	37%		
	4.96 5.20	5.00 5.50			5-20 5.3-21	4.3-17 4.5-18	3.8-15 4-16	VC C	358 348		80% 81%		425 407	6% 6%	69% 72%	UC	573 556	4% 5%	46% 49%		617 606	4% 4%	39% 40%	-	
	5.43	6.00			5.5-22	4.8-19	4-16	C	339		83%			7%	74%			5%	51%		595	4%	41%	1	
	Flow	Boom	Tip		Speed (L/Ha				10-15		31-15		10-15	#402					91-15		10-15		86-15		
	L/min	BAR	BAR	300L/Ha	400L/Ha	450L/Ha	500L/Ha	Class	VMD		<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600		
	3.88 4.26	2.50 3.00			3-12 3.3-13	2.5-10 2.8-11	2.3-9.3 2.5-10	XC			63% 66%													-	
110	4.60	3.50			3.5-13	3-12	2.8-11	XC			69%	UC	558	4%	46%									1	
-15	4.91	4.00	2.07	5-20	3.8-15	3.3-13	3-12	XC	398	10%	71%	UC	539	5%	51%		608	4%	40%						
Nozzles	5.21	4.50			4-16	3.5-14	3.3-13	XC	386		73%		521	5%	54%			4%	42%			4%	42%	-	
	5.49 5.76	5.00 5.50			4-16 4.3-17	3.8-15 3.8-15	3.3-13 3.5-14	VC VC			75% 76%				57% 59%	UC	582 571	4% 5%	44%		632 621	4% 4%	44% 46%	-	
	6.02	6.00			4.5-17	4-16	3.5-14		358		77%				61%			5%			610	4%	48%	1	
	Flow	Boom	Tip	Sprayer S	Speed (L/Ha	on 50cm s	spacing) @	ER1	10-20	#4028	81-20	SR1	10-20	#402	87-20	MR1	10-20	#402	91-20						
	L/min	BAR	BAR	400L/Ha	500L/Ha	600L/Ha			VMD			Class	VMD	<141	<600	Class	VMD	<141	<600						
110	5.22 5.59	3.50 4.00			3.3-13 3.3-13	2.5-10 2.8-11	2.3-9 2.4-9.6	UC	502 488		55% 57%				1										
-20	5.92	4.00			3.5-13	3-12	2.4-9.6	XC					545	5%	48%										
Nozzles	6.24	5.00	1.88	4.8-19	3.8-15	3-12	2.8-11	XC	464	8%	62%	UC	531	5%	52%										
	6.55	5.50	2.06 2.25		4-16	3.3-13	2.8-11	XC					518				594	4%	42%						
	6.84			5.3-21	4-16	3.5-14	3-12	XC	444	1 80%	65%		506	6%	157%		583	5%	44%						

COMBO-JET Metering Orifices & Fertilizer Streamer Caps

COMBO-JET Fertilizer Streamer Caps

Color-coded 3-hole streamer nozzles designed for streaming liquid fertilizer on consistent spacing to minimize leaf burn.

opaoing to n	minimizo ioai barri.
Operating Pressure	0.8bar - 4bar
O-rings	FKM (viton avail.)
Material	Glass-reinforced Polypropylene

COMBO-JET Metering Orifices

Metering orifice snap into any Combo-Jet or Radialock caps to meter fertilizer or chemical flow rates

40285-04 40285-15

UR series Orifices

If you are looking for replacement two-piece pre-orifices for Combo-Jet UR series spray tips, visit the UR series spray tip page for part numbers.

Spacing es (L/HA) @ 12kph 11L 14L

> 15L 16L 18L 20L 15L 19L

> 20L

221

24L

26L

23L

28L

30L

32L

36L

39L

34L

42L

45L

48L

54L

59L

46L

56L

60L

64L

72L

79L

57L

70L

75L

81L

901

99L

68L

84L

90L

97L

108L

118L

91L

112L

121L

129L

144L

158L

114L

140L

161L

180L

197L

137L

168L

181L

193L

216L

237L

17cm							*Some	metering o	orifices have	e long stem	s, as they d	o not requir	re strainers	J			
Combo-Jet Streamer Nozzle		Pres. (BAR)	Rate													50cm C Applicati	
Size	Size	(DAII)	L/min	8 kph	10kph	12kph	8 kph	10kph	12kph	8 kph	10kph	12kph	8 kph	10kph	12kph	8 kph	10kph
Use		1.00	0.114	43L	34L	28L	34L	27L	23L	28L	23L	19L	22L	18L	15L	17L	14L
Tip Wizard	U	1.50	0.140	52L	42L	35L	42L	34L	28L	35L	28L	23L	28L	22L	18L	21L	17L
	-005 COMBO-JET	1.75	0.151	57L	45L	38L	45L	36L	30L	38L	30L	25L	30L	24L	20L	23L	18L
meterina	Metering	2.00	0.161	60L	48L	40L	48L	39L	32L	40L	32L	27L	32L	25L	21L	24L	19L
orifices &	Orifice	2.50	0.180	68L	54L	45L	54L	43L	36L	45L	36L	30L	36L	28L	24L	27L	22L
streamers!	40285-005	3.00	0.197	74L	59L	49L	59L	47L	39L	49L	39L	33L	39L	31L	26L	30L	24L
ou ourilois:		1.00	0.153	57L	46L	38L	46L	37L	31L	38L	31L	25L	30L	24L	20L	23L	18L
		1.50	0.187	70L	56L	47L	56L	45L	37L	47L	37L	31L	37L	30L	25L	28L	22L

48L

521

581

631

551

671

72

77

861

951

821

1011

109L

116L

130L

1091

134L

145L

155L

190L

137L

168L

181L

2161

237L

164L

201L

2171

2321

284L

219L

268L

289L

3091

3461

379L

274L

3351

362L

3871

432L

474L

328L

402L

434L

464L

519L

40L

431

481

531

461

561

601

64l

721

791

681

841

90L

97L

108L

911

1121

121L

129L

144L

158L

114L

140L

151L

161L

180L

197L

1371

168L

193L

2161

237L

182L

223L

241L

2881

316L

228L

279L

3021

3221

360L

3951

274L

3351

362L

3871

432L

51L

54

60L

66L

571

70L

75L

81L

85L

105

113

121L

135l

114

140l

151L

1611

180L

1971

1421

174

1881

2011

2251

2471

171

2091

226l

2421

2701

2961

2281

2791

3021

322

360

3951

2851

3491

3771

4031

451L

494

3421

4191

4521

4841

541L

40L

43L

48L

46L

60L

64L

72L

79L

68L

841

90L

97L

108L

91L

112L

121L

1291

144L

158L

114L

140L

151L

161L

180L

197L

137L

168L

181L

193L

216L

237L

182l

223L

241L

258L

2881

316L

2281

2791

302L

3221

360L

395L

2741

335L

3621

387L

432L

474

34L

36L

40L

38L

47L

50L

54L

60L

66L

57L

70L

75L

81L

90L

76L

93L

101L

107L

120L

132L

95L

116L

126L

134L

150L

165L

114L

140L

151L

161L

197L

152L

186L

201L

215L

240L

263L

190L

233L

251L

2691

300L

3291

228L

279L

302L

360L

395L

40L

43L

48L

52L

45L

55L

60L

64L

71L

78L

67L

83

89L

95L

107L

90L

1101

119L

127L

142L

1561

112L

1381

149L

159L

178L

195L

135

165L

179L

1911

234L

180L

2201

2381

285

312L

225L

275L

2981

318L

356

390

270L

331L

3571

427L

32L

34L

38L

42L

36L

48L

51L

57L

62L

54L

66I

71L

76L

85L

72L

88L

95L

102L

125L

90L

1101

119L

127L

142L

156L

108L

132L

143L

153L

171L

187L

144L

176L

190L

2281

249L

180L

220L

238L

254L

285L

312L

216L

264L

2861

27L

281

32L

30L

40L

421

47L

521

45L

551

60L

64L

71L

60L

73L

79L

85L

95L

1041

75l

92L

991

106L

119L

130L

901

110L

119L

127L

142L

156L

120L

147L

159L

170L

190L

208L

1<u>50L</u>

184L

212L

237L

2601

180L

220L

238L

2851

30L

32

36L

34L

42L

451

48

54L

51L

63

68L

73L

81L

68L

84L

901

97L

1081

1181

85L

105I

113L

121L

1351

148L

103

126L

136L

1451

178L

137L

168L

181L

1931

2161

237L

171L

209L

2261

242L

2701

296

205L

251L

271L

2901

324L

24L

261

29L

32L

271

34L

36L

39L

43L

47L

41L

501

54L

58L

65L

551

67L

72

77L

86L

951

68L

84L

901

97L

108L

118L

82

101L

109L

116L

142L

1091

134L

145L

155L

173L

190L

137L

1681

181L

193L

216L

237L

164L

201L

217L

2321

2591

284L

with Combo-Jet snap-in strainers

1.75

2.00

2.50

3.00

1.00

1.50

1.75

2.00

3.00

1.00

1.50

1.75

2.00

2.50

1.00

1.50

1.75

2.00

2.50

3.00

1.00

1.50

1.75

2.00

2.50

3.00

1.00

1.50

1.75

2.00

2.50

3.00

1.00

1.50

1.75

2.00

2.50

3.00

1.00

1.50

1.75

2.00

0.202

0.216

0.241

0.265

0.228

0.302

0.322

0.360

0.395

0.342

0.419

0.452

0.484

0.541

0.456

0.558

0.603

0.645

0.721

0.790

0.570

0.698

0.754

0.806

0.901

0.987

0.684

0.838

0.905

0.967

1.184

0.91

1.12

1.29

1.44

1.58

1.14

1.40

1.61

1.80

1.97

76L

81L

91L

85L

105l

113L

1211

135L

148L

1281

157

170L

181L

2221

171L

209L

2261

242L

2701

296

214L

262L

2831

302L

338L

3701

256

314L

339L

363L

405L

444L

3421

419L

452L

484L

541L

592L

427L

5231

565L

604L

676L

740

61L

65I

72L

79L

68L

90L

97L

108L

118L

103L

126

136L

145L

162L

137L

168L

181L

193L

2371

171L

209L

226L

242L

270L

296L

205

251L

271L

2901

324L

355L

274L

335L

362L

387L

432L

474L

342L

419L

484L

541L

5921

410L

503L

5431

649L

51L

541

60L

661

571

701

75l

81L

901

991

851

105I

113L

121L

135L

114L

140L

151L

161L

180L

1971

142L

174L

188L

201L

225L

247L

1711

209L

226L

2421

296L

228L

279L

302L

3601

395L

285L

349L

377L

403L

451L

4941

342L

452L

484L

541L

61L

65

72L

79L

68L

84L

90L

97L

108L

118L

103L

1261

136L

145L

162L

137L

168L

181L

193L

237L

171L

209L

226L

242L

270L

296L

2051

251L

271L

290L

324L

355L

274L

335L

362L

387L

432L

474L

342L

419L

452L

484L

541L

5921

410L

5031

543L

5801

649L

Orifice

Metering

40285-02

-025

COMBO-JE1

Orifice

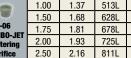
40285-02

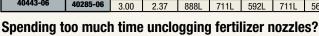
COMBO-JET

40285-03

-04

Orifice





Use COMBO-JET snap-in slotted strainers to provide an extra layer of protection from plugging

COMBO-JET_® Metering Orifices & Fertilizer Streamer Caps

Common Liquid Weight, Specific Gravity, and Conversion Factor for Flow Rate:

Required Flow Rate x Conversion Factor = Flow Rate adjusted for density

[WATER] 8.34 lbs/gal Specific Gravity 1.0 Conversion Factor: 1.00 [28-0-0] 10.67 lbs/gal Specific Gravity 1.28 Conversion Factor: 1.13 [10-34-0] 11.65 lbs/gal Specific Gravity 1.28 Conversion Factor: 1.18

Combo-Jet	Metering	_	Flow	20cm (Outlet S	pacing	25cm (Outlet S	pacing	30cm (Outlet S	pacing	38cm (Outlet S	pacing	50cm (Outlet S	pacing
Streamer Nozzle	Orifice	Pres. (BAR)	Rate	Applicat	ion Rates	(L/HA) @	Applicati	ion Rates	(L/HA) @	Applicat	ion Rates	(L/HA) @	Applicat	ion Rates	(L/HA) @	Applicat	ion Rates	s (L/на) @
Size	Size	(DAII)	L/min	8 kph	10kph	12kph	8 kph	10kph	12kph	8 kph	10kph	12kph	8 kph	10kph	12kph	8 kph	10kph	12kph
	9 1	1.00	1.82	684L	547L	456L	547L	438L	365L	456L	365L	304L	360L	288L	240L	274L	219L	182L
	Short*	1.50	2.23	838L	670L	558L	670L	536L	447L	558L	447L	372L	441L	353L	294L	335L	268L	223L
	COMBO-JET	1.75	2.41	905L	724L	603L	724L	579L	482L	603L	482L	402L	476L	381L	317L	362L	289L	241L
	[Short] 40285-08s	2.00	2.58	967L	774L	645L	774L	619L	516L	645L	516L	430L	509L	407L	339L	387L	309L	258L
	[Long]	2.50	2.88	1081L	865L	721L	865L	692L	577L	721L	577L	481L	569L	455L	379L	432L	346L	288L
40443-08	40285-08	3.00	3.16	1184L	948L	790L	948L	758L	632L	790L	632L	526L	623L	499L	416L	474L	379L	316L
		1.00	2.28	855L	684L	570L	684L	547L	456L	570L	456L	380L	450L	360L	300L	342L	274L	228L
	Short*	1.50	2.79	1047L	838L	698L	838L	670L	558L	698L	558L	465L	551L	441L	367L	419L	335L	279L
	COMBO-JET	1.75	3.02	1131L	905L	754L	905L	724L	603L	754L	603L	503L	595L	476L	397L	452L	362L	302L
	[Short]	2.00	3.22	1209L	967L	806L	967L	774L	645L	806L	645L	537L	636L	509L	424L	484L	387L	322L
	40285-10s [Long]	2.50	3.60	1352L	1081L	901L	1081L	865L	721L	901L	721L	601L	711L	569L	474L	541L	432L	360L
40443-10	40285-10	3.00	3.95	1481L	1184L	987L	1184L	948L	790L	987L	790L	658L	779L	623L	519L	592L	474L	395L
		1.00	2.85	1068L	855L	712L	855L	684L	570L	712L	570L	475L	562L	450L	375L	427L	342L	285L
	Short*	1.50	3.49	1309L	1047L	872L	1047L	838L	698L	872L	698L	582L	689L	551L	459L	523L	419L	349L
	COMBO-JET	1.75	3.77	1413L	1131L	942L	1131L	905L	754L	942L	754L	628L	744L	595L	496L	565L	452L	377L
1981	[Short]	2.00	4.03	1511L	1209L	1007L	1209L	967L	806L	1007L	806L	672L	795L	636L	530L	604L	484L	403L
	40285-125s [Long]	2.50	4.51	1689L	1352L	1126L	1352L	1081L	901L	1126L	901L	751L	889L	711L	593L	676L	541L	451L
40443-125	40285-125	3.00	4.94	1851L	1481L	1234L	1481L	1184L	987L	1234L	987L	823L	974L	779L	649L	740L	592L	494L
	Till I	1.00	3.42	1282L	1026L	855L	1026L	821L	684L	855L	684L	570L	675L	540L	450L	513L	410L	342L
		1.50	4.19	1570L	1256L	1047L	1256L	1005L	838L	1047L	838L	698L	826L	661L	551L	628L	503L	419L
		1.75	4.52	1696L	1357L	1131L	1357L	1086L	905L	1131L	905L	754L	893L	714L	595L	678L	543L	452L
	-15	2.00	4.84	1813L	1451L	1209L	1451L	1160L	967L	1209L	967L	806L	954L	763L	636L	725L	580L	484L
	COMBO-JET	2.50	5.41	2027L	1622L	1352L	1622L	1297L	1081L	1352L	1081L	901L	1067L	854L	711L	811L	649L	541L
40443-15	[Long] 40285-15	3.00	5.92	2221L	1777L	1481L	1777L	1421L	1184L	1481L	1184L	987L	1169L	935L	779L	888L	711L	592L
		1.00	4.56	1710L	1368L	1140L	1368L	1094L	912L	1140L	912L	760L	900L	720L	600L	684L	547L	456L
	10	1.50	5.58	2094L	1675L	1396L	1675L	1340L	1117L	1396L	1117L	931L	1102L	882L	735L	838L	670L	558L
	- 6	1.75	6.03	2262L	1809L	1508L	1809L	1447L	1206L	1508L	1206L	1005L	1190L	952L	794L	905L	724L	603L
	-20	2.00	6.45	2418L	1934L	1612L	1934L	1547L	1289L	1612L	1289L	1075L	1272L	1018L	848L	967L	774L	645L
	COMBO-JET	2.50	7.21	2703L	2162L	1802L	2162L	1730L	1442L	1802L	1442L	1201L	1423L	1138L	948L	1081L	865L	721L
40443-20	[Long] 40285-20	3.00	7.90	2961L	2369L	1974L	2369L	1895L	1579L	1974L	1579L	1316L	1558L	1247L	1039L	1184L	948L	790L
		1.00	5.70	2137L	1710L	1425L	1710L	1368L	1140L	1425L	1140L	950L	1125L	900L	750L	855L	684L	570L
	110	1.50	6.98	2617L	2094L	1745L	2094L	1675L	1396L	1745L	1396L	1163L	1377L	1102L	918L	1047L	838L	698L
		1.75	7.54	2827L	2262L	1885L	2262L	1809L	1508L	1885L	1508L	1256L	1488L	1190L	992L	1131L	905L	754L
	-25	2.00	8.06	3022L	2418L	2015L	2418L	1934L	1612L	2015L	1612L	1343L	1591L	1272L	1060L	1209L	967L	806L
	COMBO-JET	2.50	9.01	3379L	2703L	2253L	2703L	2162L	1802L	2253L	1802L	1502L	1778L	1423L	1186L	1352L	1081L	901L
	[Long] 40285-25	3.00	9.87	3701L	2961L	2468L	2961L	2369L	1974L	2468L	1974L	1645L	1948L	1558L	1299L	1481L	1184L	987L
		1.00	6.84	2564L	2051L	1710L	2051L	1641L	1368L	1710L	1368L	1140L	1350L	1080L	900L	1026L	821L	684L
		1.50	8.38	3141L	2513L	2094L	2513L	2010L	1675L	2094L	1675L	1396L	1653L	1322L	1102L	1256L	1005L	838L
		1.75	9.05	3392L	2714L	2262L	2714L	2171L	1809L	2262L	1809L	1508L	1785L	1428L	1190L	1357L	1086L	905L
	-30	2.00	9.67	3627L	2901L	2418L	2901L	2321L	1934L	2418L	1934L	1612L	1909L	1527L	1272L	1451L	1160L	967L
	COMBO-JET	2.50	10.81	4055L	3244L	2703L	3244L	2595L	2162L	2703L	2162L	1802L	2134L	1707L	1423L	1622L	1297L	1081L
	[Long] 40285-30	3.00	11.84	4442L	3553L	2961L	3553L	2843L	2369L	2961L	2369L	1974L	2338L	1870L	1558L	1777L	1421L	1184L
	M	1.00	9.12	3419L	2735L	2279L	2735L	2188L	1824L	2279L	1824L	1520L	1800L	1440L	1200L	1368L	1094L	912L
	- 111	1.50	11.17	4188L	3350L	2792L	3350L	2680L	2233L	2792L	2233L	1861L	2204L	1763L	1469L	1675L	1340L	1117L
		1.75	12.06	4523L	3618L	3015L	3618L	2895L	2412L	3015L	2412L	2010L	2381L	1904L	1587L	1809L	1447L	1206L
	-40	2.00	12.89	4835L	3868L	3224L	3868L	3095L	2579L	3224L	2579L	2149L	2545L	2036L	1697L	1934L	1547L	1289L
	COMBO-JET	2.50	14.42	5406L	4325L		4325L									2162L		
	[Long] 40285-40	3.00	15.79	5922L	4738L	3948L	4738L	3790L	3158L	3948L	3158L	2632L	3117L	2494L	2078L	2369L	1895L	1579L
		1.00	11.40	4274L	3419L	2849L	3419L	2735L	2279L	2849L	2279L	1900L	2249L	1800L	1500L	1710L	1368L	1140L
		1.50	13.96	5234L	4188L	3490L	4188L	3350L	2792L	3490L	2792L	2326L	2755L	2204L		2094L	1675L	1396L
		1.75	15.08	5654L	4523L	3769L	4523L	3618L	3015L	3769L	3015L	2513L	2976L	2381L		2262L	1809L	1508L
	-50	2.00	16.12	6044L	4835L	4029L	4835L	3868L	3224L	4029L	3224L	2686L	3181L	2545L		2418L	1934L	1612L
	-50 COMBO-JET	2.50	18.02	6758L	5406L	4505L	5406L	4325L	3604L	4505L	3604L	3003L	3557L	2845L	2371L	2703L	2162L	1802L
	[Long] 40285-50	3.00	19.74	7403L			5922L	4738L			3948L		3896L	3117L				1974L
												pre-orifice				,		

"snort and long pre-ornices are intended to be used as replacement. If a long pre-ornice is used in a spray nozzie, replace it with the same length pre-ornic

COMBO-JET® Narrow-Angle Nozzles for Spot Spraying

A full selection of narrow angle spray nozzles for use in specialty applications that require a narrow, but thick pattern. These nozzles are fully compatible with PWM spray systems, and other optical spray systems. Contact factory for availability.

COMBO-JET® ER & DX Series of 20°, 40° & 60° Spray Nozzles for Optical & Spot Spraying

The DX (drift redux) & ER (fine spray) narrow angle spray nozzles.

Nozzle Rote Boom Tip Application Rate in Liftes/Hectare Liftes			•		izes and		s, conta	• ,	er.		
Size Drink Prior Speed Range C3-100% Duty cycle 20° Nozzles 40° Nozzles		Flow			Applica	ation Rate	in Litres/H	lectare			
United Column C		Rate		BAR*					20° Nozzles	40° Nozzles	60° Nozzles
0.48 2.0 1.98 3.8-15 3.12 2.3-9.2 1.9-7.7											
0.54 2.5 2.48 4.3-17 3.3-13 2.5-10 2.2-8.6 4.22-20-15 4.22-40-015 4.62-20-02 4.62-20-02											
1.08 4.0 3.96 5.5-22 4.16 3.3-13 2.8-11 Fibov 500 4.96 6.24 4.5-18 3.8-15 3.1-12 42(120-015 42(140-015 42(160-015	-015		_								
Flow Boom Tip Speed Range Z5-100% Duty cycle © C20 Drift A0° Drift Reduction A0° Drift A0°						3.5-14					
Flow Boom Ing Speed Range (25-100% Duty cycle) @ 20			_								
0.64 2.0 1.97 3.8-15 3-12 2.5-10 2.2-8.8 MX20-02 DX40-02 DX60-02 0.76 3.0 2.95 4.8-19 3.8-15 3.3-13 2.8-11 2.90 Fine Spray 40° Fine Spray 60° Fine Spray 9.10 1.0 1 5.0 4.92 6-24 4.8-19 4.16 3.5-14 42120-02 442140-02 442160-02 442140-02 442160-02											
O.71 2.5 2.46 4.3-17 3.5-14 2.8-11 2.5-9.8 #42220-02 #42240-02 #42260-02 O.78 30. 2.95 4.8-19 3.8-15 3.3-13 2.8-11 2.0-9.8 c.78-19 C.78											
0.78 3.0 2.95 4.8-19 3.8-15 3.8-15 3.3-13 2.8-11 2.90 Fine Spray 40° Fine Spray 60° Fine Spray 10° Fine Spray 60° Fine Spray	-02										
1.01 5.0 4.92 624 4.8-19 4.16 3.5-14 842120-02 842140-02 842160-02	02				4.8-19	3.8-15		2.8-11	20° Fine Spray		60° Fine Spray
Flow Boom Tip Speed Range (25-100% Duty oycle)											
Description Color											
0.89 2.5 2.44 4.3-17 3.5-14 3.12 2.8-11 #4220-025 #42240-025 #42260-025 1.3 4.0 3.90 5.5-22 4.5-18 3.8-15 3.5-14 #4210-025 #42140-025 #42160-025 #42160-025 #42140-025 #42160-025		L/min	BAR	BAR	125L/Ha	150L/Ha	175L/Ha	200L/Ha	Reduction	Reduction	Reduction
1.97 3.0 2.92 4.8-19 4-16 3.3-13 3-12 20° Fine Spray 40° Fine Spray 60° Fine Spray 1.26 5.0 4.87 6-24 5-20 4.3-17 3.8-15 4.2120-025 4.2140-025 4.2160-025 4.2140-025 4.2160-025 4.2140-025 4.2160-025 4.2140-025 4.2160-025 4.2140-025 4.2160-025 4.2140-025 4.2160-025 4.2140-025 4.2160-025 4.2140-025 4.2140-025 4.2160-025 4.2140-02	005										
1.13 4.0 3.90 5.5-22 4.5-18 3.8-15 3.5-14 #42120-025 #42140-025 #42160-025 H0W Boom Tip Speed Range (25-100% buty cycle)	-025										
Flow Born Tip Speed Range (25-100% Duty cycle)		1.13	4.0	3.90	5.5-22	4.5-18	3.8-15	3.5-14	ER20-025	ER40-025	ER60-025
Umin BAR BAR 125L/Ha 150L/Ha 175L/Ha 200L/Ha Reduction Reduction Reduction Nukley Nukl											
0.95											
1.16 3.0 2.89 5.5-22 4.8-19 4-16 3.5-14 1.34 4.0 3.86 6.5-26 5.3-21 4.5-18 4-16 1.50 5.0 4.82 7.3-29 6-24 5.3-21 4.5-18 42/120-03 #42/140-03 #42/160-03 #		0.95	2.0	1.93	4.5-18	3.8-15	3.3-13	2.8-11	DX20-03	DX40-03	DX60-03
1.34 4.0 3.86 6.5-26 5.3-21 4.5-18 4-16 1.50 5.0 4.82 7.3-29 6-24 5.3-21 4.5-18 #42120-03 #42140-03 #42160-03 F60 0.00	-03										
1.50 5.0 4.82 7.3-29 6-24 5.3-21 4.5-18 #42120-03 #42140-03 #42140-03 #42160-03 Flow Boom Tip Speed Range (25-100% Duty cycle) @ 1.77 4.0 3.75 7-28 5.3-21 4.3-17 3.3-13 3-12 4.220-04 #42240-04 #42260-04 1.53 3.0 2.81 6-24 4.5-18 3.8-15 3.3-13 3-12 4.7-220-04 #42240-04 #42260-05 #42260-06 #42260-06 #42											
L/min BAR BÁR 150L/Ha 200L/Ha 275L/Ha 275L/Ha DX20-04 1.25 2.0 1.87 5-20 3.8-15 3-12 2.8-11 DX20-04 #42240-04 #42260-04 1.53 3.0 2.81 6-24 4.5-18 3.8-15 3.3-13 3-12 #42220-04 #42240-04 #42260-04 1.97 3.0 3.75 7-28 5.3-21 4.3-17 3.8-15 ER20-04 ER40-04 #42160-04 ER60-04 1.97 5.0 4.69 8-32 6-24 4.8-19 4.3-17 4.0 3.75 Free Spray 40° Fine Spray 60° Fi		1.50	5.0	4.82	7.3-29	6-24	5.3-21	4.5-18	#42120-03		#42160-03
1.25											
1.40											
1.77	-04	1.40	2.5	2.34	5.5-22	4.3-17	3.3-13	3-12			
1.97 5.0 4.69 8.32 6-24 4.8-19 4.3-17 #42120-04 #42140-04 #42160-04 #42160-04 #42160-04 #42160-04 #42160-04 #42160-04 #42160-04 #42160-04 #42160-04 #42160-04 #42160-04 #42160-05 #42260-06 #42260-08 #42260-08											
L/min BAR BAR 175L/Ha 200L/Ha 250L/Ha 300L/Ha Reduction DX20-05 DX40-05 M220-05 M220-05 M2260-05 M220-05 M2220-05											
1.53 2.0 1.81 5.3-21 4.5-18 3.8-15 3.12 DX20-05 #42240-06 #42240-06											
1.72 2.5 2.26 6-24 5.3-21 4-16 3.5-14 #42220-05 #42240-05 #42260-05 1.88 3.0 2.72 6.5-26 5.8-23 4.5-18 3.8-15 20° Fine Spray 40° Fine Spray 60° Fine Spray 50° Fin											
2.17 4.0 3.62 7.5-30 6.5-26 5.3-21 4.3-17 ER20-05 #42140-05 #42160-05	-05										
2.43 5.0 4.53 8.3-33 7.3-29 5.8-23 4.8-19 #42120-05 #42140-05 #42160-05											
Flow Boom Tip Color											
1.80 2.0 1.74 5.5-22 4.3-17 3.5-14 3.12 DX20-06 #42220-08 #42220-08											
2.02 2.5 2.17 6-24 4.8-19 4-16 3.5-14 #42220-06 #42240-06 #42260-06 2.21 3.0 2.61 6.8-27 5.3-21 4.5-18 3.8-15 2.0° Fine Spray 40° Fine Spray 50° Fin											
2.21 3.0 2.61 6.8-27 5.3-21 4.5-18 3.8-15 2.0° Fine Spray ER20-06 ER40-06 #42140-08 #42140	-06										
2.85 5.0 4.35 8.5-34 6.8-27 5.8-23 5-20 #42120-06 #42140-06 #42160-06 Flow Boom Tip Speed Range (25-100% Duty cycle) @ 20° prift Reduction DX60-08 M220-08 M2		2.21	3.0	2.61	6.8-27	5.3-21	4.5-18	3.8-15			
Flow L/min BAR BAR 300L/Ha 350L/Ha 400L/Ha 450L/Ha 2.29 2.0 1.58 4.5-18 4.16 3.5-14 3-12 DX20-08 #42220-08 #42240-08 #42260-10 BReduction DX40-08 BAR 3.00 2.37 5.5-22 4.8-19 4.3-17 3.8-15 3.5-14 4.2120-08 #42240-08 #42260-08 4.2260-08 4											
L/min BAR BAR SAR											
2.56 2.5 1.97 5.3-21 4.5-18 3.8-15 3.5-14 #42220-08 #42240-08 #42260-08 2.81 3.0 2.37 5.5-22 4.8-19 4.3-17 3.8-15 3.0° Fine Spray 40° F		L/min	BAR	BAR	300L/Ha	350L/Ha	400L/Ha	450L/Ha	Reduction	Reduction	Reduction
2.81 3.0 2.37 5.5-22 4.8-19 4.3-17 3.8-15 20° Fine Spray 40° Fine Spray 60° Fine Spray 3.24 4.0 3.16 6.5-26 5.5-22 4.8-19 4.3-17 ER20-08 ER40-08 ER40-10 ER4160-08 ER40-10 ER4160-10 ER4160-1	00										
3.24 4.0 3.16 6.5-26 5.5-22 4.8-19 4.3-17	-06										
Flow Boom Tip Speed Range (25-100% Duty cycle) @ 20° Drift Reduction DX60-10 DX90-10 DX90-10 DX60-10 D		3.24	4.0	3.16	6.5-26	5.5-22	4.8-19	4.3-17	ER20-08	ER40-08	ER60-08
L/min BAR BAR 400L/Ha 450L/Ha 500L/Ha 600L/Ha Reduction DX20-10 DX40-10 DX60-10 DX60-10 DX0-10 DX											
2.71 2.0 1.41 4-16 3.5-14 3.3-13 2.8-11 DX20-10 BX40-10 H42240-10 3.32 3.0 2.12 5-20 4.5-18 4-16 3.8-15 3-12 H42220-10 H42220-12 H42					400L/Ha		500L/Ha	600L/Ha			
3.32 3.0 2.12 5-20 4.5-18 4-16 3.3-13 20° Fine Spray 40° Fine Spray 42° Fine Spray 40° Fine Spray 42° Fine Spray 40° Fine Spray 42° Fine Spray 42		2.71	2.0	1.41	4-16	3.5-14			DX20-10	DX40-10	
3.83 4.0 2.82 5.8-23 5-20 4.5-18 3.8-15 ER20-10 ER40-10 ER60-10 42210-10 42210-10 ER60-10 ER60	-10										
4.28 5.0 3.53 6.5-26 5.8-23 5.3-21 4.3-17 #42120-10 #42140-10 #42160-10 Flow Boom Tip Speed Range (25-100% Duty cycle) @ 20° Drift Reduction 3.14 2.0 1.21 3.8-15 3.3-13 2.8-11 2.4-9.4 DX20-125 #42240-125 #42240-125 #42240-125 3.51 2.5 1.52 4.3-17 3.5-14 3-12 2.8-11 #42220-125 #42240-125 #42240-125 #42240-125 4.3-17 3.5-14 3.8-15 3.3-13 3-12 20° Fine Spray 40° Fi											
L/min BAR BAR 500L/Ha 600L/Ha 700L/Ha 800L/Ha Reduction Dx20-125 DX40-125 D		4.28	5.0	3.53	6.5-26	5.8-23	5.3-21	4.3-17	#42120-10	#42140-10	#42160-10
3.14 2.0 1.21 3.8-15 3.3-13 2.8-11 2.4-9.4 DX20-125 DX40-125 DX40-125 M2260-125 3.61 2.5 1.52 4.3-17 3.5-14 3.12 2.8-11 #42220-125 #42240-125 #42260-125 3.84 3.0 1.82 4.5-18 3.8-15 3.3-13 3-12 20° Fine Spray 40° Fine Spray 60° Fine Spray 40° Fine											
-125 3.51 2.5 1.52 4.3-17 3.5-14 3-12 2.8-11 #42220-125 #42240-125 #42260-125 3.84 3.0 1.82 4.5-18 3.8-15 3.3-13 3-12 20° Fine Spray 40° Fine											
4.44 4.0 2.42 5.3-21 4.5-18 3.8-15 3.3-13 ER20-125 ER40-125 ER60-125	-125	3.51	2.5	1.52	4.3-17	3.5-14	3-12	2.8-11	#42220-125	#42240-125	#42260-125
4.96 5.0 3.03 6-24 5-20 4.3-17 3.8-15 #42120-125 #42140-125 #42160-125		4.44	5.0	3.03	6-24	5-20	4.3-15	3.8-15	#42120-125	#42140-125	#42160-125

NOTE: This chart takes into account a relative pressure drop through commonly used PWM solenoids to illustrate some potential flow restriction for larger spot spraying nozzles. If using PWM solenoid without PWM/Duty cycle, simply use maximum speed in range for speed/flow rate.

Spot & Broadcast spraying with the same nozzles? Consider **COMBO-JET**® 80° Nozzles Using 80° drift reduction nozzles can be an effective way to use broadcast (with overlap) and spot spray mode with the same nozzles.

What is optical spot spraying?

Optical spraying systems, or spot spraying based on optical feedback is used for a variety of purposes and with different modes of action.

Spray on Green

Optics identify 'green' targets in field, and sprays them.

- Pre-plant spraying to clear out established weeds
- Spraying fungicide on plants in field, ignoring dirt.
- Using modes of actions to manage resistant weeds.
- Foliar fertilizer applications on plant only

Green on Green

Optics & computer differentiate plants in field and spray target plants only.

- Spraying weeds ONLY, avoiding planted crop.
- Spraying crop with fungicide, ignoring weeds.
- Spraying different weeds with different chemicals

While the potential benefits of Green on Green provide a great deal of flexibility & means to use cost-prohibitive herbicide regimens, the means to differentiate plants a application time and development of the computing power and learning mechanisms are continually under development.

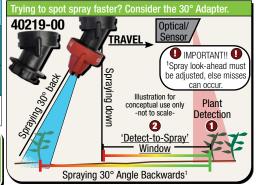
Effectively through development of the narrow angle nozzles, there is a relative sweet spot for consistent coverage and maintaining a reasonable level of driftable fines.

Since optical/spot sprayers are typically subject to minimized speeds and narrow spacing, Wilger developed the DX series as a sweet-spot between drift reduction and coverage in those nozzle sizes and angles.

Are they still PWM-spray system compatible? Absolutely!

Faster nozzle pattern generation, faster shut-off, and increased time with an optimal spray pattern are ways to tune in your spot spraying application.

The Insta-jet insert helps improve responsiveness of your nozzle by significantly reducing the amount of cavity space within a nozzle body outlet, such that there is less cavity space to charge between pulses. This means faster ON and OFF time of the nozzle's spray, leaving for more time being optimally


spraying

The INSTA-JET insert snaps into any COMBO-JET nozzle¹ to

snap-in insert

¹except UR series, or nozzles using adapters that do not allow for use of a snap-in strainer/insta-jet

COMBO-JET_® Cap Adapters

Order #####-V0 for viton o-ring assemblies

Wilger manufacturers a variety of adapters to adapt Wilger nozzles to other brands of nozzle bodies (e.g. Teejet, Hypro, Arag, etc), provide new functions, or a mix thereof. All adapters self-align cap to common nozzle offset angle.

COMBO-JET 50/30 Adapter

40442-00 COMBO-JET outlet to 30° & 50° front/back COMBO-JET outlets -Quarter Turn-

COMBO-JET 30/30 Y-Adapter

40440-00 COMBO-JET outlet to dual 30° front/back COMBO-JET outlets -Quarter Turn-

30° COMBO-JET to COMBO-JET

40219-00 COMBO-JET to COMBO-JET, 30° incline (front or back) -Quarter Turn-

COMBO-JET DOUBLE-DOWN

40441-00 COMBO-JET outlet to dual COMBO-JET outlets straight down -Quarter Turn-

Square Lug to COMBO-JET

40204-00 Converts Square Lug (e.g. Teejet/Hypro) Outlet to COMBO-JET -TWIST-LOCK-

Square Lug to DOUBLE-DOWN

40206-00 Converts Square Lug Outlet to COMBO-JET Double-Down Outlets -TWIST-LOCK-

COMBO-JET to Square Lug

40203-00 Converts COMBO-JET Outlet to Square Lug (e.g. Teejet/Hypro) -Quarter Turn-

30° COMBO-JET to Square Luq

40220-00 COMBO-JET to Square Lug, 30° incline (front or back) -Quarter Turn-

JACTO to COMBO-JET

40207-00 Converts Jacto Outlet to COMBO-JET -Quarter Turn-

AGRIFAC to COMBO-JET

40205-00 Converts Agrifac Outlet to COMBO-JET Easy nozzle sleevesnaps into Combo-Jet caps

AGRIFAC to DOUBLE-DOWN

40203-00 + 40441-00 Converts Agrifac Outlet to Double COMBO-JET -Quarter Turn-

AGRIFAC to 30/30 Y-Adapter

40213-00 Converts Agrifac Outlet to COMBO-JET Y-adapter Outlets -TWIST-LOCK-

Y-Adapter or 'Double-Down' mode?

To split up a high volume, coarse spray nozzle into two more meaningful spray qualities. Y-adapter is excellent for vertical growing targets. double-down is better into thick canopies.

Read the 'Tip Guide for Double Nozzle Spraving'

PWM-Ready *Double Nozzle Spraving*

Just add the two nozzle sizes together for your PWM nozzle flow For example: MR110-04 + SR110-05

*PWM solenoid pressure drop would e based on combined size (e.g

40202-00 HARDI Outlet to COMBO-JET -Semi-permanent snap on adapter-

Radialock Slotted Caps & ER spray tip capsules (80° & 110°)

Wilger manufacturers caps for using flanged spray tip capsules onto any Combo-Jet nozzle outlets. Gasket is required.

3/8" Slot 3/8" For 3/8"

Teejet/Hypro spray tips 40269-05 ¹May be available in colors: Grey (-09), Ora

1/2" Round Slot

spray tips1 40271-05 , Brown (-07), Blue (-06),

7/16" Wide Slot

Teejet/Hypro spray tips2 40276-05

HARDI Tip Slot

For HARDI spray tips2

HARDI

²May be available in colors*: **Black (-05), Yellow (-04), G Red (-01)** *Check factory availability of non-black colors. ·04), Green (-03), Willia (+02),

ER Stainless spray tips with 3/8" capsules

low (-04), Green (-03), Will (602), Red (-01)

40170-04

Optimal Height 75cm 40169-04

Optimal Height 50cm

Use with #40269-05 + #40160-00 gasket Looking for narrower 20°, 40° or 60° ER nozzle capsules? Contact Wilger.

Tip Size	-005	-0067	-01	-015	-02	-025	-03	-04	-05	-06	-08
80° ER Tip	ER80-005	ER80-007	ER80-01	ER80-015	ER80-02	ER80-025	ER80-03	ER80-04	ER80-05	ER80-06	ER80-08
Part #	40170-005	40170-007	40170-01	40170-015	40170-02	40170-025	40170-03	40170-04	40170-05	40170-06	40170-08
110° ER Tip		-	ER110-01	ER110-015	ER110-02	ER110-025	ER110-03	ER110-04	ER110-05	ER110-06	ER110-08
Part #	-	-	40169-01	40169-015	40169-02	40169-025	40169-03	40169-04	40169-05	40169-06	40169-08

For flow rate & spray quality charts, and more information on ER spray tips, reference the 80° and 110° spray nozzle charts.

COMBO-JET_® Caps, Adapters & Strainers

Wilger manufacturers a variety of caps that are used for metering flow rates (through hose barb, push-in tube, or streamer caps) or used as accessories for other spraying or plumbing functions.

Plug Caps

40272-B5

Caps unused Combo-Jet nozzle body outlets

Di	
Plug C	ар
Assembled Plug	Cap Only
40272-B5	40272-05

Hose Barb Caps

40260-00

40261-00

Stainless

Steel for

Chemical

Spraying

40250-00

Mesh Size

100 mesh

25 mesh

Hose barb caps can be used as manifold plumbing parts or for metering flow.

	Hose Barb Caps	
Barb Size	FKM O-ring Assy	Cap Only
1/8"	40420-B5	40420-05
1/4"	40422-B5	40422-05
3/8"	40424-B5	40424-05
1/2"	40426-B5	40426-05

To use cap for metering, order CAP ONLY, with o-ring and 40285-## metering orifice.

COMBO-JET Cap 0-rings

13mm x 3mm o-ring

for COMBO-JET®

Caps & Spray Tips

COMBO-JET Snap-in Strainers Combo-jet strainers snap into a metering orifice or cap for an assembly that handles as 'one-piece'

40251-00 40249-00

40249-00

40248-00

Slotted Strainer | Stainless Mesh

use 100 mesh for -02 nozzles o

Adapter for non-metering caps Seal adapter is used to keep o-ring in place if metering orifice

is NOT used

Slotted

Plastic

Strainer

for

#40251-00

#40250-00 use 50 mesh for -025 or larger nozzles

Push-in-Tube Caps

Quick connect tube caps seal on the outside diameter of a tube, and used as manifold plumbing parts or for metering flow.

Quick Connect/Push-in-tube Caps					
Tube Size (O.D.) FKM O-ring Assy Cap Only					
1/4"	40435-B5	40435-05			
5/16"	40437-B5	40437-05			
3/8"	40436-B5	40436-05			

To use cap for metering, order CAP ONLY, with o-ring and 40285-## metering orifice.

Threaded Outlet Adapters

Combo-Jet Cap with NPT-F threaded port

Th	readed Outlet Ca	ps
Thread Size	FKM O-ring Assy	Cap Only
1/8" NPT-F	40277-B5	40277-05
1/4" NPT-F	40273-B5	40273-05
45° 1/4" NPT-F	40274-B5	40274-05

For applications that do not required liquid metering orifices (e.g. plumbing manifolds), the -B5 is an assembly that includes an o-ring (#40260-00), seal adapter (#40261-00 in lieu of orifice), and cap.

Hose Drop & Extension Caps

Hose Drop Caps are used to feed or spray down below a canopy to minimize crop contact.

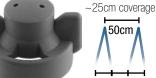
Outlet	Length	Part #	lī
Combo-Jet	5cm	40210-00	
to Combo-Jet	12cm	40211-00	
Combo-Jet	40cm	22026-00	
Combo-Jet Cap to	60cm	22036-00	
1/4" NPT-M	91cm	22038-00	
1/4 INF 1-1VI	122cm	22048-00	
	5.7cm	130	em

Other styles of Hose Drop Assemblies using threaded inlets are also available. Find them in the DRY BOOMS section of the catalog.

Fertilizer Streamer Caps

3-hole Fertilizer Streamer Caps [Molded]

3-hole fertilizer streamer (FS3) nozzle improves stream consistency across higher pressure ranges



Color-coded, Single part number ordering

VISIT PAGE 28-29 for both FS3 Fertilizer Streamer Caps & metering orifice charts

2-hole Streamer Caps [Drilled]

2-hole streamer caps are used to stream liquid fertilizer for

3-hole Streamer Caps [Drilled]

3-hole streamer caps are used to stream liquid fertilizer

17cm coverage 50cm 17cm

Drilled Fertilizer Streamer Caps [CAP ONLY]					
Cap Size	Flow Range	2-Hole Cap	3-Hole Cap		
Small	0.19 - 1.51 L/min	40432-047	40433-047		
Medium	0.76 - 3.78 L/min	40432-086	40433-067		
Large	1.9 - 11.4 L/min	40432-104	40433-104		

Ordering [Drilled] Streamer Caps

For drilled streamer cap assembly, order:

- 1. Metering Orifice (40285-## series)*
- 2. Streamer cap (2 or 3 hole, sized to flow range
- 3. O-ring seal (40260-00 or 40260-V0)
- 4. [Optional] Slotted Strainer

*For selecting metering orifices to fit your application, use Tip Wizard, consult flow charts, or use other tools available at www.wilger.net

Square Lug Nozzle Outlet Caps - Only for Square Lug Nozzle Body Outlets (Teejet, Hypro, etc)

40197-05 Square Lug nozzle outlet plug cap

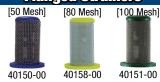
3/8" Slot Cap

40248-00

Color

Blue

40260-V0


40159-05 For 3/8" wide flanged spray tips

Threaded Cap

45° 1/4" NPT-F thread

Flanged Strainers

Stainless Steel Strainers for Square-Lug Caps & Nozzles

Cap Gaskets

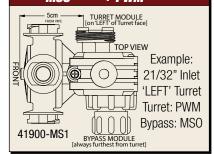
40160-V0 [viton] Gaskets are required to

seal all Square Lug Caps

©Copyright 2024 Wilger Industries Ltd.

WILGER Dual-Spray 4+1 [DS41] Nozzle Bodies

Dual Spray 4+1 [DS41] Nozzle Bodies


The DS41 nozzle body is the next generation of compact nozzle body. Many significant design changes have been made to improve turret position, durability and strength, and reliability in some of the most challenging environments in spraying.

			DS41 I	Nozzle Bodies with	5/16" Bolt Mount Upp	er Clamp
Boom			Turret Control	Module C	Configuration & Asseml	bly Part#
Pipe/Tube	Nozzle Outlet	Inlet Hole	Module	-00	-MS1	-NM
Size	Configuration	Size	Position ¹	MSO on BOTH	MSO on Bypass	No modules on
Oizo			1 CONTON	Bypass & Turret	No Module on Turret	Bypass & Turret
	4 CJ (Turret)	3/8" Inlet	LEFT	41902-00	41902-MS1	41902-NM
		3/6 IIIIet	RIGHT	41903-00	41903-MS1	41903-NM
		High Flow	LEFT	41900-00	41900-MS1	41900-NM
1"		21/32" Inlet	RIGHT	41901-00	41901-MS1	41901-NM
(1.315" OD)	(1.315" OD) 4 SqLug (Turret)	3/8" Inlet	LEFT	41912-00	41912-MS1	41912-NM
		3/6 Inlet	RIGHT	41913-00	41913-MS1	41913-NM
	+ 1 CJ (Bypass)	High Flow	LEFT	41910-00	41910-MS1	41910-NM
		21/32" Inlet	RIGHT	41911-00	41911-MS1	41911-NM

DS41 LEFT & RIGHT bodies are dictated by position of turret module relative to the front faceplate. For ease of ordering, recommended to order 50% LEFT & RIGHT for sprayer retrofits. Bypass' module is always opposite the turret's module.

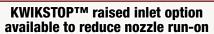
NEW 30/50 Adapter for spraying with the DS41

Given the DS41 is ultra compact, the 30/50 was designed to spin on the turret with the 30° angle forward1

> 40442-00 **Perfeet** for cereal fundelde application

¹When using the 50° nozzle angle forward, removal of the adapter will be required due to the compact nature of the DS41.

COMBO-JET_® Nozzle Bodies


Hinged Clamp for easy installation

Compact body sits directly under the boom. Perfect for tight boom frames & heavy

PWM solenoids

Nozzle Bodies can swap right/left orientation to avoid sprayer boom frame

Debris-cleaning 3/8" inlet slots for less residue buildup

Bodies can be equipped with any combination of control modules, including AIR-OFF, PWM solenoid, Manual ON/OFF or spring-based diaphragm check valves

Nozzle Bodies available in **Combo-Jet or Square Lug styles** (Teejet/Hypro/etc) with 1, 2 or 3 nozzle outlets

Single Outlet COMBO-JET® Nozzle Bodies

Robust and cost effective nozzle bodies for sprayers and used on wet boom liquid fertilizer kits.

Boom Pipe	Inlet Size	Outlets	Style	Part#
3/4" (1.05" OD)	3/8"	1 CJ	Check Valve	40611-00
			Check Valve	40621-00
1"	3/8"	1 CJ	Manual On/Off	40621-MS
(1.315" OD)			No Module	40621-NM
	21/32"	1 CJ	No Module	40626-NM

The COMBO-JETO Adventege

40611-P15 Single Outlet w/ 1.0bar check valve red) and hose barb cap

Commonly used in liquid fertilizer metering manifolds mounted on plumbed pipe

KWIKSTOP™ stops Run-on

KWIKSTOP™passively purges air trapped in the sprayer boom.

Nozzles are fed from the top of the pipe

Less air means Less Nozzle Run-on & Drips

Dual Outlet COMBO-JET® Swivel Bodies

Robust and cost effective nozzle bodies for sprayers to switch up to two nozzles by simply rotating the outlet. Safer and easier than handling contaminated nozzles.

3				
Boom Pipe	Inlet Size	Outlets	Style	Part#
3/4" (1.05" OD)	3/8"	2 CJ	Check Valve	40612-00
			Check Valve	40622-00
1"	3/8"	2 CJ	Manual On/Off	40622-MS
(1.315" OD)			No Module	40622-NM
	21/32"	2 CJ	No Module	40627-NM

Commonly used to cost effectively retrofit a sprayer to a PWM spray

High/Low PSI Check Valves

Replace part # ending '-00' to order 0.27bar or 1bar check valves

0.27 bar '-P4' [BLUE]

0.7 bar -00° [Standard]

1 bar -P15 [RED]

Triple Outlet COMBO-JET® Swivel Bodies

Robust and cost effective nozzle bodies for sprayers to switch up to three nozzles by simply rotating the outlet.

Salet and easier than nationing containinated hozzles.					
Boom Pipe	Inlet Size	Outlets	Style	Part#	
3/4" (1.05" OD)	3/8"	3 CJ	Check Valve	40613-00	
			Check Valve	40623-00	
1"	3/8"	3 CJ	Manual On/Off	40623-MS	
(1.315" OD)			No Module	40623-NM	
	21/32"	3 CJ	No Module	40628-NM	

40631-00

1" KWIKSTOP™ Nozzle Bodies

Nozzle bodies with raised inlets to passively purge air trapped at the top of a sprayer boom pipe, reducing nozzle run-on & improving boom shut-off response times.

Boom Pipe	Outlets	Style	Part#
1"	1 CJ	Check Valve	40631-00
(1.315" OD)	2 CJ	Check Valve	40632-00
(1.315 OD)	3 CJ	Check Valve	40633-00

Smooth Clamp Bodies

Swivel bodies have been switched to a standard bolt-mount hinge clamp.

Contact Wilger for a cross-reference chart for the smooth clamp part numbers and their bolt-mount replacement.

Nozzle Body Specifications

Operating Pressure	0.7*-7 bar
Single Outlet Flow Rate	8 L/min @0.34bar pressure drop 11.7 L/min @0.68bar pressure drop
Dual Swivel Flow Rate	6.4 L/min @0.34bar pressure drop 10.2 L/min @0.68bar pressure drop
Triple Swivel Flow Rate	6 L/min @0.34bar pressure drop 9.8 L/min @0.68bar pressure drop
O-ring Seals	FKM (viton avail.)
Materials	SS (screws) Polypropylene (body) Celcon (lower swivel)

Square Lug Swivel Nozzle Bodies & Accessories

Single Outlet Square Lug Nozzle Bodies

Robust and cost effective nozzle bodies for sprayers and used on wet boom liquid fertilizer kits.

Boom Pipe	Outlets	Style	Part#
3/4"	1 Causana Lua	Check Valve	40651-00
(1.05" OD)	1 Square Lug	No Check	40140-00
	1 Square Lug	Check Valve	40661-00
1"		Manual On/Off	40661-MS
(1.315" OD)		No Module	40661-NM
		No Check	40141-00

KWIKSTOP™ stops Run-on

KWIKSTOP™passively purges air trapped in the sprayer boom.

Nozzles are fed from the top of the pipe

Less air means Less Nozzle Run-on & Drips

Dual Outlet Square Lug Nozzle Bodies

Robust and cost effective nozzle bodies for sprayers to switch up to two nozzles by simply rotating the outlet. Safer and easier than handling contaminated nozzles.

Boom Pipe	Outlets	Style	Part#
3/4" (1.05" OD)	2 Square Lug	Check Valve	40652-00
1"		Check Valve	40662-00
(1.315" OD)	2 Square Lug	Manual On/Off	40662-MS
(1.315 OD)		No Module	40662-NM

High/Low PSI Check Valves

Replace part # ending '-00' to order 0.27bar or 1bar check valves

-P15'

[RED]

Triple Outlet Square Lug Nozzle Bodies

Robust and cost effective nozzle bodies for sprayers to switch up to three nozzles by simply rotating the outlet. Safer and easier than handling contaminated nozzles.

Boom Pipe	Outlets	Style	Part#
3/4" (1.05" OD)	3 Square Lug	Check Valve	40653-00
1"		Check Valve	40663-00
(1.315" OD)	3 Square Lug	Manual On/Off	40663-MS
(1.315 OD)		No Module	40663-NM

Nozzle Body Specifications

Operating Pressure	0.7*-7 bar	
Single Outlet Flow Rate	8 L/min @0.34bar pressure drop 11.7 L/min @0.68bar pressure drop	
Dual Swivel Flow Rate	6.4 L/min @0.34bar pressure drop 10.2 L/min @0.68bar pressure drop	
Triple Swivel Flow Rate	6 L/min @0.34bar pressure drop 9.8 L/min @0.68bar pressure drop	
O-ring Seals	FKM (viton avail.)	
Materials	SS (screws) Polypropylene (body) Celcon (lower swivel)	

1" KWIKSTOP™ Square Lug Nozzle Bodies

Nozzle bodies with raised inlets to passively purge air trapped at the top of a sprayer boom pipe, reducing nozzle run-on & improving boom shut-off response times.

Boom Pipe Outlets		Style	Part#
1"	1 Square Lug	KWIKSTOP	40671-00
(1.315" OD)	2 Square Lug	KWIKSTOP	40672-00
	3 Square Lug	KWIKSTOP	40673-00

Swivel Body Replacement Parts - For ALL TYPES Swivel Bodies

O-ring Repair Kit, CJ Nozzle Bodies, FKM (6 Bodies) 40166-05 O-ring Repair Kit, CJ Nozzle Bodies, VITON® (6 Bodies) 40193-02 SCREW, Hi-Lo, #10 x 3/4" SS [for Hinged Swivel Bodies]

40155-23 Molded Diaphragm, FKM (replaces 40155-07 + 20455-04) 20455-07 O-ring, 3/8" inlet seal, #110, FKM, Duro 70 20455-04 O-ring, Pressure Pad, Replacement (pairs with 40155-07)

Diaphragm Rubber Seal, EPDM (use w/ #20455-04) Diaphragm Rubber Seal, VITON® (use w/ #20455-04)

40155-12

3/8" Nozzle body inlet o-ring

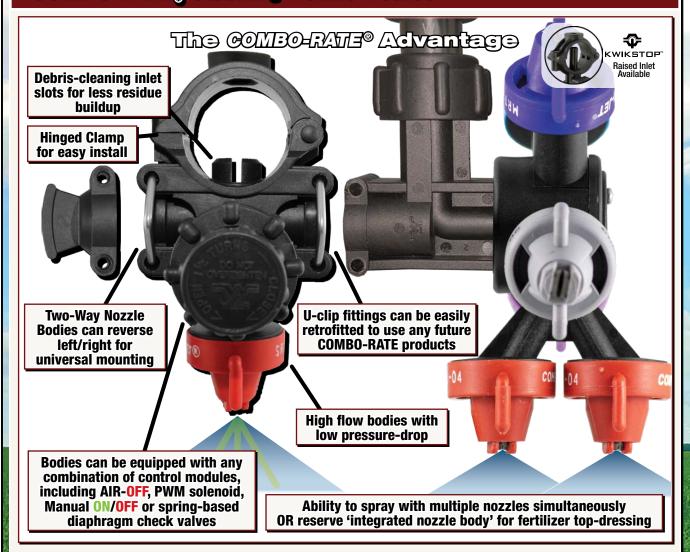
20455-07

40193-02

CJ Nozzle Body Repair Kits* (up to 6 bodies)

BUNA-N Kit incl 6x Pressure Pad O-rings #20455-04 24x Inner-body O-rings #40155-09 #40155-13 #40155-07 6x Diaphragms #40155-12 de either a pair of #20455-04 & #40155-07, or #40155-23. Both serve the same function.

Requires pressure pad o-ring to be removed



Also requires 20455-04 pressure pad o-ring

3

COMBO-RATE Stacking Nozzle Bodies

COMBO-RATE® Side-fed Saddles

Robust side-fed saddles mount with a inlet hole on the side of a sprayer boom, with a female combo-clip port for CR bodies

orr oldo rod oddaloo		
Boom Size	Inlet Size	Part#
3/4" Pipe (1.05" OD)	3/8" inlet	41203-00
1" Pipe	3/8" inlet	41200-00
(1.315" OD)	9/16" inlet	41201-00
2" Pipe (2.375" OD)	9/16" inlet	41206-00

COMBO-RATE® II Top or Bottom-fed Saddles

Combo-Rate II saddles can be fed with an bottom inlet or flipped and fed from a hole in the top of a boom pipe to passively purge air trapped in a sprayer boom.

Boom Size

1/2" Pipe

1" Pipe

Inlet Size

3/8" inlet

3/8" inlet

9/16" inlet

Part#

41471-00

41475-00

41477-00

Top-Fed Saddle

on two sides can be used to attach any Combo-Rate parts

CRII Two-Way Stacking Saddles CRII One-Way Stacking Saddles

Boom Size	Inlet Size	Part#
1/2" Pipe (0.84" OD)	3/8" inlet	41472-00
1" Pipe	3/8" inlet	41476-00
(1.315" OD)	9/16" inlet	41478-00

COMBO-RATE_® II Integrated Nozzle Bodies

One-Way Stacking Integrated COMBO-RATE ® II Nozzle Bodies

One-way stacking COMBO-RATE nozzle bodies stack to the left with one open u-clip port. Typically using a manual on/off module, these bodies can be used to spray separately than turrets/bodies or simultaneously from multiple nozzles. Multiple nozzle spraying can be an effective way to improve coverage in high volume applications to make a more meaningful mix of droplets.

Boom Size

1/2

3/4"

28mm

1" KWIKSTOP

Sch40 Pipe

Outside

0.84

1 05'

28mm

1.315

1.315"

Dia. Check

Valve

41411-00

41421-00

41481-00

41431-00

41441-00

41451-00

Stacking

Direction

One-Way

One-Way

One-Way

One-Way

One-Way

One-Way

Inlet Size

3/8" Inlet

3/8" Inlet

3/8" Inlet

3/8" Inlet

9/16" Inlet

HOW THEY WORK: Manual ON/OFF Check Valves

Since Combo-Rate nozzle bodies stack, a manual way to turn off low to certain outlets is required.

Air-Off

Operated²

41415-00

41425-00

41485-00

41435-00

41445-00

41455-00

PWM

(w/o Nut)**

41417-00

41427-00

41487-00

41437-00

41447-00

41457-00

Operating Pressure	0.7*-7bar ² (5.5 bar for air-off)			
3/8" Inlet Single Outlet Flow Rate	8 L/min @0.34bar pressure drop 11.7 L/min @0.68bar pressure drop			
9/16" Inlet Single Outlet Flow Rate	8.3 L/min @0.34bar pressure drop 13.25 L/min @0.68bar pressure drop			
21/32" Inlet High Flow Single Outlet Flow Rate	11.35L/min @0.34bar pressure drop 15L/min @0.68bar pressure drop			
O-ring Seals	FKM (viton avail.)			
Materials	SS (screws) Glass-Reinforced Polypropylene (body)			
* 0.7har minimum with 0.7har check valve				

Nozzle Body Specifications

Two-Way Stacking Integrated COMBO-RATE ® II Nozzle Bodies

Nozzle Bodies with 5/16" Bolt Mount Upper Clamp Module Description & Part#

Manual

ON/OFF

41413-00

41423-00

41483-00

41433-00

41443-00

41453-00

Two-way stacking COMBO-RATE nozzle bodies stack to both directions, with two open u-clip ports. Typically using a manual on/off module, these bodies can be used to spray separately than turrets/bodies or simultaneously from multiple nozzles. Multiple nozzle spraying can be an effective way to improve coverage in high volume applications to make a more meaningful mix of droplets.

WIKSTOP Available

				Nozzle Bo	dies with 5/16"	Bolt Mount Upp	per Clamp
	Sch40 Pipe		041-1		Module Desci	ription & Part#	
Boom Size	Outside Diameter	Inlet Size	Stacking Direction	Dia. Check Valve	Manual ON/OFF	Air-Off Operated ²	PWM (w/o Nut)**
1/2"	0.84"	3/8" Inlet	Two-Way	41412-00	41414-00	41416-00	41418-00
3/4"	1.05"	3/8" Inlet	Two-Way	41422-00	41424-00	41426-00	41428-00
28mm	28mm	3/8" Inlet	Two-Way	41482-00	41484-00	41486-00	41488-00
1"	1.315"	3/8" Inlet	Two-Way	41432-00	41434-00	41436-00	41438-00
'	1.315	9/16" Inlet	Two-Way	41442-00	41444-00	41446-00	41448-00
1" High Flow	1.315"	21/32" Inlet	Two-Way	41462-00	41464-00	41466-00	41468-00
1" KWIKSTOP	1.315"	3/8" Inlet	Two-Way	41452-00	41454-00	41456-00	41458-00

Stacked Outlet Specification

Operating Pressure	0.7*-7bar ² (5.5 bar for air-off)
3/8" Inlet Two Outlets Used Flow Rate	12 L/min @0.34bar pressure drop 19 L/min @0.68bar pressure drop
9/16" Inlet Two Outlets Used Flow Rate	13.6 L/min @0.34bar pressure drop 23 L/min @0.68bar pressure drop
21/32" Inlet High Flow Two Outlets Used Flow Rate	17 L/min @0.34bar pressure drop 34 L/min @0.68bar pressure drop
O-ring Seals	FKM (viton avail.)
Materials	SS (screws) Glass-Reinforced Polypropylene (body)
* 0.7bar minimum w	ith 0.7bar check valve

Combo-Rate Body, Turret Replacement & Auxiliary Parts

40200-02 O-ring, CR Inter-body, #206, FKM O-ring, 3/8" Nozzle Body Inlet Stem, #110, FKM 20455-07 40200-02 O-ring, 9/16" Nozzle Body Inlet Stem, #206, FKM 41361-02 0-ring, 21/32" Nozzle Body Inlet Stem, #115, FKM 20460-04 U-clip, 304SS 41331-03 Screw, Hi Lo, SS, CRII Body Hinge Clamp Screw (for 2016+ newer)

41285-00 Adapter, CR Plug [Covers unused Combo-Rate port] 41286-00 Plug, Inner CR2 port plug [fits inside side port of CRII bodies] 41502-04 CR Turret Outlet Arm, Combo-Jet Outlet

41502-10 CR Turret Outlet Arm, Square Lug Outlet CR Turret Outlet Arm, Double-Down Combo-Jet Outlet 41502-13 41502-05 CR Turret Outlet Arm, Plug

Diaphragm, Molded, FKM (Replaces #40155-07 + 20455-04) 40155-23 CRII Nozzle Body O-ring Repair Kit, FKM (6 Bodies) 41100-16 CRII Nozzle Body O-ring Repair Kit, VITON® (6 Bodies) 41502-11 CR Turret Repair Kit, FKM (2 Bodies) CR Turret Repair Kit, VITON® (2 Bodies) 41502-12

Plug, CR Clamp to plug 21/32" inlet hole on 1" pipe Requires #20455-07 O-Ring

41592-00 **Bolt-Mount** Clamp for any 1.315" OD. pipe or tube

41593-00 40155-23 Replaces 21/32" Inlet Plug Clamp

40200-02

Inter-body O-ring

41286-00

Keeps chemical out of a CRII side port hole

20455-04

COMBO-RATE®

Turret Repair Kits (For up to 2 turrets):

#41502-11 or -12

Body Repair Kits*

(For up to 6 bodies):

#41100-15 or -16

41502-10* 41502-13*

Standard Kit includes 10x Turret Outlet O-rings #20455-07 #40155-13 4x Turret Core O-rings 2x Diaphragm #41502-06 #40155-07

#41502-V6 #40155-12 2x Combo-Jet Outlet Arm #41502-04 #41502-04 2x Turret Plugs 2x Turret Lock Clips #41502-05 #41502-09

COMBO-RATE® II 6x Pressure Pad O-rings #20455-04 #20455-V4 6x Inter-body O-rings #40200-02 #40200-V2 6x Diaphragms 40155-07 *Repair kits may include a pair(s) of #40155-07 and #20455-04 or a single #40155-23. Both ser

COMBO-RATE, Stacking Thru & End Bodies

COMBO-RATE® Thru Bodies

Thru bodies stack onto any existing combo-clip female port and adds an additional combo-clip female port for further expansion.

COMBO-RATE Thru Body						
[Connects to any Combo-Rate female ports]						
Dia. Check Manual Air-Off PWM						
Valve	ON/OFF	Operated ²	(w/o nut)**			
41100-00	41110-00	41125-00	41135-00			

COMBO-RATE® End Bodies

End bodies stack onto any existing combo-clip female port to add a nozzle body that can be equipped for any spraying needs.

COMBO-RATE End Body					
[Connects to any Combo-Rate female ports]					
Dia. Check Manual Air-Off PWM					
Valve	ON/OFF	Operated ²	(w/o nut)**		
41101-00	41111-00	41126-00	41136-00		

CR Swivel End Bodies

End bodies that can be fixed in 15° increments for fence-row & crop adapted spraying applications. Attaches to any combo-clip female port.

COMBO-RATE End Body					
[Connects to any Combo-Rate female ports]					
Dia. Check Manual Air-Off PWM					
Valve ON/OFF Operated2 (w/o nu					
41102-00	41112-00	41127-00	41137-00		

Combo-Rate Stacking Body Specification

Operating Pressure 0.7*-7bar 2(5.5 bar for air-off)

O-ring Seals FKM (viton avail.)

Materials Glass-reinforced Polypropylene

Flow Rate 8L/min (end & thru), 6L/min (swivel body)

COMBO-RATE Turrets

The COMEO-FAME TURRED Adventege

Common U-clip connections for all Combo-Rate parts

Each turret arm is o-ring sealed to minimize dust & debris entry Module threads are compatible with most PWM spray systems

RAVEN

Bodies can be equipped with any combination of control modules, including AIR-OFF, PWM solenoid, Manual ON/OFF or spring-based diaphragm check valves

Square Lug, or Double-Down outlets Double-Down Turrets allow for dual nozzle spraying for better

overage in high volume & fungicide applications **COMBO-RATE** turrets provide you options to configure a desired turret configuration,

allowing it to be a universal turret for any brand of sprayer or nozzles.

COMBO-RATE_® Stacking Component Examples

Side-Fed saddle with a thru and end body

Bottom-Fed Saddle solve sprayer issues

Can be fixed in 15° increments

Swivel End Bodies For Fence-row nozzles

COMBO-RATE Turrets - cont'd

Sprayers have different nozzle requirements, due to spacing, boom frame design & interference, so Wilger has three styles of turrets that can be used to fit any situation.

COMBO-RATE Front Turrets

Front turrets stack onto any COMBO-RATE nozzle body, mounting on the common u-clip port. Turrets are available in a variety of outlet and module styles, which are mounted onto the 'front' face of the turret.

Number of Outlets	Dia. Check Valve	Manual ON/OFF	Air-Off Operated	PWM (w/o nut)*
3 CJ Outlet	41503-00	41513-00	41543-00	41533-00
4 CJ Outlet	41504-00	41514-00	41544-00	41534-00
5 CJ Outlet	41505-00	41515-00	41545-00	41535-00
3 CJ Outlet + 2 SQ Lug Outlet	41505-32*	41515-32*	41545-32*	41535-32*
Double-Down + 4 CJ Outlet	41506-00	41516-00	41546-00	41536-00

PWM solenoid or other control module to function

HOW THEY WORK: Manual ON/OFF Valves

Since Combo-Rate nozzle bodies stack a manual way to turn off flow to certain outlets is required.

When the knob is 0 standard 0.7bar check valve

When the knob is CLOSED, it turns off ow to that nozzle outlet ONLY. It does not effect other stacked nozzle bodies.

Module Installation & Re-installation

During installation, ensure knob is in OPEN orientation. Otherwise the binding nut cannot seal the check valve module Ensure the orientation tabs (green) are seated properly.

COMBO-RATE Side Turrets - Reversible

Side turrets stack onto any COMBO-RATE nozzle body, mounting on the common u-clip port. Turrets are available in a variety of outlet and module styles, which are mounted onto the side of the turret with a reversible module stem.

		Description & Part #			
Number of Outlets	Dia. Check Valve	Manual ON/OFF	Air-Off Operated	PWM (w/o nut)*	
3 CJ Outlet	41603-00	41613-00	41643-00	41633-00	
4 CJ Outlet	41604-00	41614-00	41644-00	41634-00	
5 CJ Outlet	41605-00	41615-00	41645-00	41635-00	
3 CJ Outlet + 2 SQ Lug Outlet	41605-32	41615-32	41645-32	41635-32	
Double-Down + 3 CJ Outlet	41606-00	41616-00	41646-00	41636-00	

Side-Turret Core Replacement kit for Teejet Threaded PWM Solenoid Side-Turret Core Replacement kit for Arag /Hypro Threaded PWM Solenoid

Reversing Orientation

Switch a side turret module stem from left to

COMBO-RATE Top Turrets

Top turrets stack onto any COMBO-RATE nozzle body, mounting on the common u-clip port. Turrets are available in a variety of outlet and module styles, which are mounted onto the top of the turret. Ideal for use with bulky PWM solenoids in tight booms.

		Descriptio	n & Part #	n & Part #			
Number of Outlets	Dia. Check Valve	Manual ON/OFF	Air-Off Operated	PWM (w/o nut)*			
3 CJ Outlet	41803-00	41813-00	41843-00	41833-00			
4 CJ Outlet	41804-00	41814-00	41844-00	41834-00			
5 CJ Outlet	41805-00	41815-00	41845-00	41835-00			
3 CJ Outlet + 2 SQ Lug Outlet	41805-32	41815-32	41845-32	41835-32			
Double-Down	41806-00	41816-00	41846-00	41836-00			

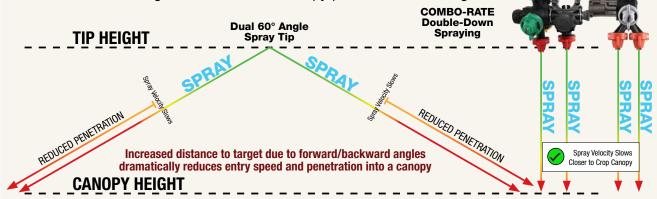
Solenoid gasket (Seats on wilger modules to seal on solenoid base)

41133-03

Module points upwards to keep large solenoids (e.g. Hawkeye II) out of the way of other boom parts.

Open module thread must have PWM solenoid or other control module to function

Double-Down Turrets Double nozzles from a single turret outlet. Great for double-down PWM spraying.


Increasing Coverage with Crop-Adapted Spraying

Different crops require different kinds of spray coverage for best efficacy, so changing how spray is deposited can often provide beneficial results in both coverage and application efficacy. It starts with adapting how the crop is being targeted, ensuring maximizing spray deposition on the target area, and minimizing spray on lessideal or wasted areas.

For example, using two spray tips **straight down** can provide better penetration through thick canopies, allowing for better interior canopy coverage; while two angled spray patterns **forward & backward** can lend to spray coverage at the top canopy foliage or on both front/back of a cereal head.

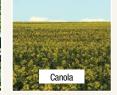
Why use two nozzles straight down, and not a multi-angle spray tip?

Further distance to target can mean less canopy penetration with angled

COMBO-RATE gives you better penetration and coverage for a more consistent application into thick canopy crops.

Examples of *Tough to Penetrate* Crop Canopies

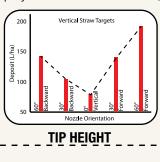
for COMBO-JET


& COMBO-RATE

for Non-Wilger

Bodies

Picking Nozzles for Double-Down Spraying?


Applicators often already have nozzles to be used in pairs for double down spraying.

E.g. 50L + 100 L/ha nozzles could be used for 150 L/ha. *Visit the dual tip spraying guide in the catalog for more info.*

What about spraying vertical targets that don't have a dense canopy?

Angled spray for vertical growing targets (e.g. cereal heads) can provide superior coverage

Spraying a vertical target is different than spraying into a canopy. Spraying forward/backward with a nozzles produces spray that can travel horizontal, making it more effective to cover vertical targets *at suitable boom heights*.

Vertical Target Spraying e.g. Applying Fungicide on Wheat

DIRECTION OF TRAVEL

Illustration for conceptual use only

D

Dry Boom Nozzle Bodies & Accessories

Compact Nozzle Bodies

Compact Bodies have many uses, as in-line check valves on planting equipment, estate sprayers, dry boom nozzle bodies, or other situations that would require a compact check valve with a Combo-Jet cap outlet.

a Combo-Jet outlet

1/2"HB x 3/8" NPT-M

3/4"HB x 3/8" NPT-M

5/8" Square-Mount Dry Boom Swivel Nozzle Bodies with 3/8" NPT-F feed

Square-Mount nozzle bodies attach to a boom frame with 5/8" square mounts, and are fed by a 3/8" NPT-F inlet.

High Mount Dry Boom Nozzle Bodies with Hose Shank Feed

40306-00

40311-00

40307-00

40312-00

40313-00

One-Way	Two-Way
40450-00	40451-00
40452-00	40453-00
-	40454-00
	40450-00 40452-00

5/8" Square Mount Stainless Steel Clamps

Wilger manufactures a series of 5/8" square mount clamps that are used with compatible nozzle bodies. Refer to the CLAMPS pages to find the full listing of available stainless steel clamps

B

ß

Dry Boom Nozzle Bodies & Accessories - cont'd

Rotating Adjustable Swivel Bodies & Hose Drop Assemblies

Hose Drop Adapters

Nylon hose drops are used to feed bodies to spray down below a canopy to minimize crop contact

Hose Drop Adapters

Inlet	Outlet	Length	Part #
		16"	22021-00
	1/4"	24"	22031-00
1/4"	NPT-M	36"	22037-00
NPT-M		48"	22047-00
	1/4"	16"	22025-00
	NPT-F	24"	22035-00

22021-00

Hose Drop & Extension Caps

Outlet	Length	Part #	
Combo-Jet	5cm	40210-00	
to Combo-Jet	13cm	40211-00	-
Combo-Jet	40cm	22026-00]
Cap to	61cm	22036-00]
1/4" NPT-M	91cm	22038-00	
1/4 INF 1-IVI	122cm	22048-00] [
	т 💮	-	40cm

40210-00 Cap Extension

Adjustable Swivel Bodies [360° Lockable Rotation Front/Back] Swivel Bodies can be rotated front to back 360° use for Crop Adapted Spraying or other targeting

40237-03

			Control Modules				
	Inlet Size	Outlet(s)	Without Dia.	Dia. Check	Manual On/Off		
	1/4"	Single	40225-00	40231-00	40237-00		
	NPT-M	Double	40226-00	40232-00	40238-00		
	1/4"	Single	40227-00	40233-00	40239-00		
	NPT-F	Double	40228-00	40234-00	40240-00		
	1/4"NPT-M w/ 1/4"	Single	40229-00	40235-00	40241-00		
	NPT-F	Double	40230-00	40236-00	40242-00		
5	3/8" HB w/ 5/8" Sq. Mount	Single	40243-00	40244-00	40245-00		

Crop Adapted Spraying

Using adjusted nozzle angles, swath and direction to better adapt to specific crop targets to maximize efficacy or minimize

360° Independent Outlets

Low-Mount Compact Bodies - Contact Factory for availability. (Non-stocked item) 11/16" Thread Mount Low Mount Bodies

A low mounting compact body that attaches to a sprayer boom frame with an 11/16" threaded nut.

40366-00

40367-00 One-Way [Left] One-Way [Right]

Inlet Size	One-way [Leπ]	One-way [Right]	iwo-way
3/8" HB	40360-00	40361-00	40362-00
1/2" HB	40365-00	40366-00	40367-00
3/4" HB	40370-00	40371-00	40372-00
40455.04			

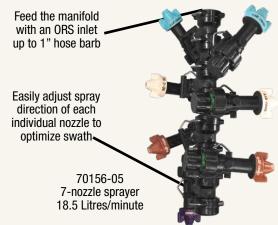
Module Retainer, Replacement 40199-00 Lock Nut. 11/16" Thread

40199-00

5/8" Square Mount Low Mount Bodies

A low mounting compact body that attaches to a sprayer boom frame with an common 5/8" square mounting port.

40382-00


Inlet Size	One-Way [Left]	One-Way [Right]	Two-Way	Three-Way
3/8" HB	40380-00	40381-00	40382-00	40383-00
1/2" HB	40385-00	40386-00	40387-00	40388-00
3/4" HB	40390-00	40391-00	40392-00	N/A

40155-21 Module Retainer Replacement

COMBO-RATE Boomless Sprayer Manifold Assemblies

Boomless sprayers are used to spray areas not accessible by traditional boomed sprayers, such as ditches, roadways, pastures, and commercial/industrial areas.

COMBO-RATE boomless sprayers can be configured in hundreds of ways depending on mounting, size, and flow requirement.

Example Assembly	Flow Rate (L/min)	Part#
O Normala Describera	5L/ min	70154-01
3-Nozzle Boomless Spraying Manifold	10L/ min	70154-03
	22L/ min	70154-06
	8.7L/ min	70155-02
5-Nozzle Boomless	11L/ min	70155-03
Spraying Manifold	22L/ min	70155-06
	43.5L/ min	70155-12
	15L/ min	70156-04
7-Nozzle Boomless	18.5L/ min	70156-05
Spraying Manifold	36L/ min	70156-10
	74L/ min	70156-20

Adiustable swath distance charts online

Stainless Steel Clamps for Sprayer & Liquid Fertilizer Appl.

5/8" Square Mount Clamps

5/8" Square Mount clamps attach a nozzle body with 5/8" square mount to a tube or pipe

			10011 01 -	
Mount Size	Standard 5/8" Square Mount Clamp (SS)		Adjustable High-Reach 5/8" Square Mount Clamp (SS)	
	for Round Tube	for Square Tube	for either Round Tube or Square Tube	
1/2"	40320-SS N/A		3/4" Tube Extra High Reach	
3/4"	40321-SS	40325-SS	40343-SS	
1"	40322-SS	40326-SS	3/4" to 1-1/4"	
1-1/4"	N/A	40327-SS	40341-SS	
1-1/2"			1-1/2" to 2"	
2"			40342-SS	
40341-04 R	eplacement Lock Cli	o. Plastic		

3/4" Square Mount Clamps for Nozzle Bodies

Sq. Tube Size	Part#
1"	41261-SS
1-1/4"	41262-SS
1-1/2"	41263-SS
2"	41264-SS

Two-Hole Bolt-Mount Clamps for Sq. Tube

Three-Hole Bolt-Mount Clamps for Sq. Tube

Three-Hole Clamps for Sprayer Boom Tube, Nozzle Body & Utility Mounting Boom tube clamps are sold in halves, so two are required for proper use.

Z

B

Nozzle Body Accessories & Replacement Parts

Combo-Rate Control Modules & Nuts

Wilger manufacturers a few styles of control modules that can be swapped between any Combo-Rate or Combo-Jet nozzle bodies

Recommended to apply 1.4bar more than spray pressure for ideal operation & guick shut-off Inter-body Strainers

Inter-body strainers are used in-between Combo-Rate nozzle bodies to catch burrs or debris during the break-in period of new sprayers, or to further protect_PWM solenoids

Diaphragm Seals

Rubber Diaphragms are used in ALL control modules to seal the flow within the check valve

All-in-One Diaphragm, used in parts made after 2019

40155-23

The bottom of the control modules have a groove for a presure pad o-ring or all-in-one diaphragm

Two-piece diaphragm & pressure pad o-ring

Diaphragm

Pressure pad O-Ring

40155-07 40155-12

20455-04 (Buna-N) 20455-V4

Either rubber diaphragm can be typically used, but ensure to replace diaphragm in proper orientation and remove pressure pad o-ring if 40155-23 diaphragm is used. For low pressure & flow, the twopiece may perform better.

0-ring Seals

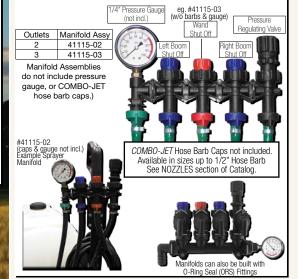
O-ring seals are commonly used on many component parts.

FKM material is standard, viton is available.

0-ring	Description/Where Used	FKM#	VITON #
13mm x 3mm			40260-V0
#009	CR Top-turret faceplate	41802-04	40802-V4
#015	ORS Metering orifices	40225-04	40225-05
#106	9/16" Nozzle body inlet	51204-04	51204-V4
#108	Module pressure pads	20455-04	20455-V4
#110	3/8" Nozzle body inlet	20455-07	20455-V7
#115	21/32" Nozzle body inlet	41361-02	41361-v2
#116	1/2" QN100 connections	25120-02	25120-V2
#118	ORS Strainer cartridges	-	20576-V4
#119	EFM Sensor housing seal	20580-12	20580-13
#121	CR Turret core seals	41502-06	41502-V6
#203	5/16" Push-In Tube 0-ring	20457-03	20457-v3
#206	CR Stacked body side seal	40200-02	40200-v2
#212	0-ring Seal (ORS) fittings	20460-03	20460-15
#214	Boom end flush valve core	-	25175-08
#219	QN100 0-ring seal	25160-02	25160-V2

Air Tees & Reducers

Tees and Reducers that can be used to couple tube for air or liquid supply


20455-00

Fitting Type	Description	Part#
Tee	3/8" x 3/8" x 1/4" O.D.	20455-00
iee	5/16" x 5/16" x 1/4" O.D.	20457-00
Reducer	3/8" x 1/4" O.D.	20456-00

Estate Sprayer Manifolds, Accessories & Adapters

Estate Sprayer Manifold Assemblies

Wilger manifold assemblies are pre-built manifolds based on common requirements. COMBO-RATE components can be used to expand or change any manifold.

0	Pressure	Manual On/Off	1/4" NPT-F for	
Connection	Regulating Valve	Check Valve	Pressure Gauge	
Thru Body	41130-00	41110-00	-	
End Body	41101.00	41111 00		
Combo-Clip Male	41131-00	41111-00	-	
End Body			41251-00	
Combo-Clin Female	-	_	41231-00	

Combo-Clip (CC) Adapters & 3/4" Sq. Mount Clamps

Combo-Clip connections are compatible with all Combo-Rate Fittings and Nozzle Bodies

Outlet	Dt II
Uullet	Part #
Plug	41285-00
1/4" NPT-F	41275-00
3/8" NPT-F	41276-00
1/4" NPT-F	41251-00
1/4" NPT-M	41252-00
3/8" NPT-M	41253-00
90° CC-M	41250-00
1/4" NPT-F	41255-00
3/8" NPT-F	41256-00
	Plug 1/4" NPT-F 3/8" NPT-F 1/4" NPT-F 1/4" NPT-M 3/8" NPT-M 90° CC-M 1/4" NPT-F

41255-00 41275-00 41285-00 41252-00 41250-00

Clamps for 3/4" Square-Mount Adapters

Square Tube	
Size	Nozzle Body Clamps
1"	41261-SS
1-1/4"	41262-SS
1-1/2"	41263-SS
2"	41264-SS

Combo-Clip Adapters can be used to convert a traditional dry boom sprayer to use cutting edge COMBO-RATE turrets & fittings

41256-00 w/ 3/4" Sq. Mount Clamp

Regulating & Manual On/Off Manifold Valves

Open or close to regulate now much flow is bypassed back to tank to regulate pressure. Lock washer is used to hold position

When in 'ON' position,

acts as a 0.7bar drip check,

1/4" NPT-F

41130-00

41131-00 41110-00 41111-00

41251-00

Ensure to visit the NOZZLES section of the catalog for the full listing of **COMBO-JET** Caps

1/2" & 1" Stainless Steel Tube For Quick-Nut & Quick-Flange Fittings

Wilger Stainless Steel Tubing is engineered for high performing modern sprayers. The high flow sprayer boom tube shares outside dimensions of commonly-used sch40 pipe, but with dramatically reduced weight.

Custom tube lengths, spacing and inlet holes are available by order.

Larger Inside Diameter Inside diameter is larger to

accommodate higher flow rates

Rolled End for Cost-Effective Manufacturing

Tube ends are rolled instead of threaded to minimize downtime, and thread leaking/failure

For Recirculating Booms

Compatible boom fittings & tubing for building recirculating booms

1" Stainless Steel Tubing

Shares 1" sch40 pipe outside diameter (1.315" OD.) with larger 1.25" inside diameter

1.315" 1.25 0.D. I.D.

Lighter 1" Boom = Less Fuel weighs 66% of aluminum

weighs 23% of sch40 pipe Lighter than hose

1/2" Stainless Steel Tubing

Shares 1/2" sch40 pipe outside diameter (0.84" OD.) with larger 0.788" inside diameter

Lighter 1/2" Boom = Less Fuel

weighs 80% of aluminum weighs 28% of sch40 pipe Lighter than hose

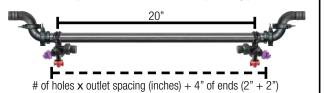
Sprayer Tube Shipping Consideration - Length

Depending on requirement for sprayer tube length, shipping costs are generally less expensive for tubes that are less than 9' (108") in length.

Pre-punched Outlet Spacing

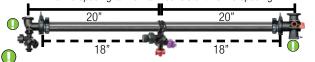
Sprayer tubes are commonly pre-punched to 20" nozzle spacing, but also available in pre-punched to 10", 15", 30" or custom spacing as required.

Picking the Correct Style of Tube End & Length


Different sprayer boom configurations require different combinations of lengths of tube.

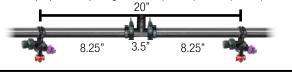
To simplify the boom configuration & planning process, consider starting with tubes with the least amount of extra material on the ends. This will reduce dead-ends that may trap chemical residue. With the minimal tube length in mind (# of holes on tube x hole spacing), then consider different tube-end configurations.

Some fittings shorten the tube lengths required (as they include the last nozzle), reducing the # of holes required.


Standard Tube Ends (2")

Tubes that have 2" of tube after the last nozzle body are commonly used with QN100 or QF100 plumbing parts.

Super Compact Nozzle Body Ends (18")


The CR BEFV & QF100 w/ CR clamp integrates the last nozzle for a super compact boom end. The tube should be 2" shorter than the intended nozzle spacing to maintain consistent nozzle spacing.

NOTE: For each CR BEFV/Integrated Elbow, tube will be 1 inlet hole "short"

Center-fed Section Ends (8" or 8.25")

Tubes that are center-fed with Tees require a pair of longer tube sides to maintain proper 20" spacing with a 4" (QN100) or 3.5"(QF100) wide tee.

10" Ends for Tube to Tube SST

For situations that require two smaller tubes to be joined tube to tube, the 10" ends maintain 20" spacing between the last nozzle bodies

Select a Type of Plumbing Parts

NEW Quick-Flange (QF100) Fittings

A series of flanged adapters that convert either a rolled-end tube (like SST) or other 1.315" OD tube/pipe to a common 1" flange and tool-free clamp system

Quick Nut (QN100 & QN50) Fittings

A series of quick couplers that use the rolled end to connect to a variety of sweep sprayer fittings to maximize flow capacity and boom hygiene.

Quick-Flange Fittings & Fluid Supply System

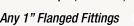
The Quickflenge Adventage

Perfect Recirc. **Booms**

Stronger Compact **Fittings**

Compact Boom End **Options**

No Threads or Sealant Required


Cutting out Boom Contamination

Retrofitting & Flange Compatibility

Fittings available for complementing any sort of sprayer boom & more.

CAN BE OUTFITTED FOR:

1" sch40 Pipe (1.315" 0D)

Wilger Stainless Tubing

Case Thin Wall Stainless

Compatible with other 1" Flange Fittings

-3/8" Flange Sea Inside

2-1/32" Flange Surfac

Compact & Robust Sweep Fittings

Sweep fittings reduce turbulence & pressure loss, producing a sprayer that is capable of higher flow rates with less

Recirculation Made Easy

Many options for any recirculating boom

Sweep flange fittings to maximize flow through a sprayer

Quick-Flange Adapters for Different Sprayer Tubing Types

Adapting Quick-Flange Fittings to any 1" PIPE, 1" SST, or Case® TWS Boom Tube

QF100 Fittings can be seamlessly retrofitted or adapted to any 1" Pipe, QN SST, or TWS Booms to a 1" Flange Fitting.

Case® Thin-Wall Stainless (TWS) to Quick-Flange Three-piece flange

27312-00

27343-00 adapter end QF100 x 1-1/4" HB, 90° 27316-SK gasket is available Case® is a registered trademarks of CNH Industrial America LLC.

adapter snaps over the boom pipe and tightens with a binding nut, sealing with a TWS to QF100 Seal. *For greater anti-twist resistance, the skirted

Wilger Stainless Steel Tube (SST) to Quick-Flange 3-piece Flange

Three-piece flange adapter snaps over the boom pipe and tightens with a binding nut, sealing with a SST to QF100 Seal.

27312-00 3-piece flange adapter end **27343-00** QF100 x 1-1/4" HB. 90°

Through-Pipe to CR BEFV & Thru Elbow

Through-Pipe Flange End Adapter Super Flexible Up to 3/4" of excess tube material can fit into a CR BEFV

27382-00 QF100 through-pipe adapter kit

27360-00 CR BEFV for with flange :

Two half-clamps mount on a boom tube, securing to the tube-end adapter. The result is a flanged tube end with up to 1/4-1" of excess tube material sticking out of the adapter. This excess length slides into a CR BEFV (or Elbow w/ top clamp #2737#-00 series), providing greater flexibility.

Cut-Pipe to Quick-Flange

Compatible with any Quick-Flange or common-flange fittings.

Two half-clamps mount on a boom tube, securing to the cut pipe-end adapter. The result is a common-flange end.

Not shown: An additional compact 2-piece pipe end adapter is also available for Case Thin-wall stainless tube, and Wilger SST. It is not intended for robust, mobile applications, but remains an option for adapting tube to a flange end.

Building a SST Sprayer Boom for Quick-Flange (QF100)

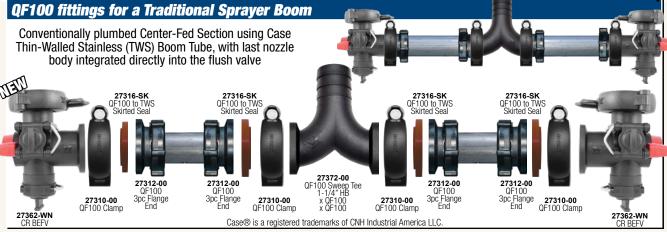
When planning to build a sprayer boom with Wilger's Stainless Steel Tube, follow these steps to break down the process and engineer the best performing sprayer boom possible.

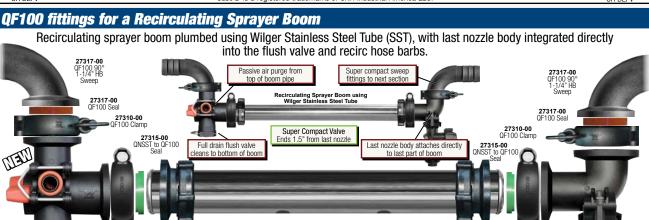
STEPDetermine tube lengths & spacing required for each section. Simply count the number of outlets on each required boom tube between each fold, accounting for separated sections (if required).

STEP(2) Split up nozzle sections based on boom type, or to minimize boom tube length (e.g. 11 nozzles max).

For Recirculating (R) Sprayer Booms: Anticipate keeping sections made with as few boom tubes as possible, as plumbing fittings will only be on the either end of the tube (aside from any tube-to-tube joints on the same section)

For Standard (S) Sprayer Booms: Anticipate splitting sections in half, allowing for a center-fed sweep tee, providing optimal pressure to each nozzle in each sprayer section.


Determine whether any boom end nozzle bodies (like Combo-Rate Boom End Flush Valve nozzle body) are being used, as they may require different lengths (as they encompass the last outlet on a sprayer boom)


Determine the tube end spacing depending on the fittings used.

CR BEFV requires 18" tube end. Tube Joint requires 10" tube end. Regular fittings requires 2" end.

For example, a 5-section recirculation sprayer, with 72 outlets (on 20" spacing) using Combo-Rate End Flush Valve Bodies

اء	SECTION 1		SECTION 2	SECTION 3		SECTION 4	SECTION 5
STEP 1 Section sizing	11 nozzles	20 no	zzles	10 nozzles	20 no	zzles	11 nozzles
STEP 2 Tube Lengths	11 hole	10 hole + 10) hole joined	10 hole	10 hole + 10) hole joined	11 hole
STEP 3 Specialty Boom End Considerations	11 hole -2 (CR BEFV) 9 hole tube	10 hole -1 (CR BEFV) 9 hole tube + joint	10 hole -1 (CR BEFV) 9 hole tube + joint	10 hole <u>-2 (CR BEFV)</u> 8 hole tube	10 hole -1 (CR BEFV) 9 hole tube + joint	10 hole -1 (CR BEFV) 9 hole tube + joint	11 hole <u>-2 (CR BEFV)</u> 9 hole tube
STEP 4 Tube/End Lengths to Order	9 hole tube with 18" End (CR BEFV) & 18" End (CR BEFV)	9 hole tube with 18" End (CR BEFV) & 10" End (joint)		8 hole tube with 18" End (CR BEFV) & 18" End (CR BEFV)	18" End (CR BEFV)	9 hole tube with 10" End (joint) & 18" End (CR BEFV)	9 hole tube with 18" End (CR BEFV) & 18" End (CR BEFV)

Stainless Steel Tubing (SST) available in pre-punched nozzle spacing & lengths.

Contact factory for costing and production lead-times

27310-00 QF100 Clamp

27310-00 QF100 Clamp

Quick-Flange Tube-End Adapters, Seals & Kits

QF100 Tube-End & Pipe-End Adapters, Seals & Kits

Gasket seals mate different tube & QF100 fittings together. Ensure correct seals are identified for each connection.

3pc End Adapter

2 halves secure over pipe, affixed with binding nut

Max Pressure

100psi/7bar

Seals Used

Wilger SST uses flared taper gasket

27315-SK [skirt] 27315-00 [std]

Case TWS uses stepped or

skirted

Adapters & Kits

Boom End/Tube Type		Adapter/K
Wilger SST rolled end OR Case TWS flared end		[3pc] 27312-00 [2pc] 27313-00
Cut pipe end kit [9pc]		27381-00
Through pipe end kit [9pc]		27382-00
NPT-F	1/2" NPT-F	27357-00
Threaded Pipe	3/4" NPT-F	27358-00
Adapters	1" NPT-F	27359-00

QF100 Gasket Seals

Seal Type	Standard	Skirted*
Sear Type	Seal Part#	Seal Part#
SST Tube x Flange	27315-00	27315-SK
TWS Tube x Flange	27316-00	27316-SK
Flange x Flange	27317-00	27317-SK
Wilger SST to SST	27318-00	27318-SK
Case TWS to TWS	27319-00	27319-SK

*Skirted gaskets are used when more robust sealed connections are required

2pc End Adapter

27313-00

Wilger SST

for non-mobile applications. requiring low pressure

gasket

Tube to Flange End Seals

Gasket seal against a formed tube end profile

Tube to	Standard	Skirted*		
Flange Seals	Seal Part#	Seal Part#		
SST Tube	27315-00	27315-SK		
x Flange				
TWS Tube	27316-00	27316 SK		
x Flange		27310-3K		
Skirted gaskets are used when more				

robust connections are required

SST Tube x Flange

27316-00 Standard

TWS Tube x Flange 27316-SK Skirted Gasket*

MATERIAL: FKM

Looking for 27316-02? It's been replaced by #27316-SK

Cut Pipe End Adapter Kit

27381-00 For any 1.315" OD pipe/tube

27317-00 [std] 27317-SK [skirt]

Flange to Flange Fitting Seal

Gasket seals common 1" flange fitting ends

Flange	Standard	Skirted*	
Seal	Seal Part#	Seal Part#	
Flange x	27217-00	27317-SK	
Flange	27317-00	27317-3K	

Gasket seals between

Tube End to Tube End Seals

Seal Part#

Skirted

two butt ends of tube

Most Robust Use with

Wilger SST 27318-00 27318-SK to SST Case TWS 27319-00 27319-SK to TWS

Seals

Tube to Tube Standard

Through Pipe Adapter Kit

27382-00 For any 1.315" OD pipe/tube

Up to Kit seals holes, and

CR BEFV or Through-Pipe

Quick-Flange Clamps

Compact & robust clamps for easy installation & adjustment with hinging bolt. Compatible with common 1" flange fittings.

Poly Clamp	Part#
Butterfly Nut & Bolt	27310-00
Nut & Bolt	27311-00

Butterfly Nut Flange Clamp 27310-00

Nut & Bolt Flange Clamp 27311-00

Polypropylene Clamp & Stainless Hardware

Threaded Pipe Adapter

For male national pipe threaded (NPT) pipes

Available in 1/2", 3/4" & 1" NPT-F sizes

Threaded

Uses QF100 Standard Gasket 27317-00 [std]

QF100 Adapters & Caps

QF100 Plugs, and other adapters for auxiliary connections to QF100 fittings

•	•	•
Size/Style	Description	Part#
Plug Cap	QF100 Plug Cap	27353-00
Female	QF100 x 1/2" NPT-F	27357-00
Thread	QF100 x 3/4" NPT-F	27358-00
Adapter	QF100 x 1" NPT-F	27359-00
Male Thread	QF100 x QN100-M Thread	27351-00
Adapter	QF100 x TWS-M Thread	27352-00

QF100 Cap

E.g. QF100 to QN100 Flush Valve 25160-02 |_{7/8} Adapter 0-ring Seal to QN100 27351-00 25175-LV0

Quick-Flange Fittings & Parts

QF100 Elbows & Hose Barb Fittings

Compact & high flow sweep fittings for less pressure loss & higher flow capability for a better performing sprayer boom.

Size/Style	Description	Part#
Flange	Elbow, 90°, Compact	27324-00
x Flange	Elbow, 45°, Compact	27326-00
1"	QF100 x 1" HB, Straight	27331-00
Hose Barb	QF100 x 1" HB, 45° Sweep	27332-00
x QF100	QF100 x 1" HB, 90° Sweep	27333-00
1-1/4"	QF100 x 1-1/4" HB, Straight	27341-00
Hose Barb	QF100 x 1-1/4" HB, 45° Sweep	27342-00
x QF100	QF100 x 1-1/4" HB, 90° Sweep	27343-00

27341-00 1-1/4" HB, Straight

QF100 Sweep Tee & Regular Tee Fittings

27342-00

Sweep Tees

Compact & high flow sweep fittings for less pressure loss & higher flow capability for an improved sprayer boom.

Tee Fittings	Sweep Tee	Regular Tee
	Part#	Part#
QF100 x QF100 x QF100	27371-00	27321-00
QF100 x QF100 x 1-1/4" HB	27372-00	27322-00
QF100 x QF100 x 1" HB	27373-00	27323-00

QF100 x 1-1/4" HB

Compact tees for flat bottom drainage.

Regular Tees

27321-00

TETT

COMBO-RATE Boom End Flush Valve (CR BEFV)

The Better Boom End Nozzle Body & Valve

A boom end flush valve with two Combo-Rate ports for attaching a fence-row nozzle body, turret, or any COMBO-RATE fittings.

,	,
Valve version	Part#
Base Model w/o plugs	27360-00
Recirc Model w/ plugs	27361-00
Non-Recirc model w/ plugs	27362-00
Name and indicated by the order of the court	070C0 W/N

u-clip port x2 Full Flush Boom End Flush Valve

O-ring Seal outlet [compatible with any Wilger ORS fittings]

Non-recirc with plugs & Butterfly nut

Easily adaptable for any configuration

Designed for Recirculating Booms

Designed to incorporate an in-line flange fitting for easy recirc configuration.

Passive Air Purge

Nozzle pulls air directly from the top of boom pipe reducing nozzle run-on

flange outlet combined in one piece

Remove Dead Spots in the boom

Boom ends directly with last nozzle body and flush valve to ensure boom hygiene

QF100 Flange Elbow with Nozzle Body Upper Clamp

Flange Elbows w/ Body Clamp

Compact flanged elbows with built-in nozzle body clamp

, ,			,
	Compact Elbow Module Orientation		Offset Ext.
Flange to Flange			Elbow
	Outward	Inward	Inward
3/8" Inlet	27365-00	27366-00	27370-00
21/32" High Flow Inlet	27367-00	27368-00	27369-00

Super Compact Boom Ends

Offset Extended Elbow w/ Body Clamp

The offset flange allows for free use of flange fittings for recirculating sprayers ahead of the last nozzle body. Nozzle bodies would be 'inward' facing.

Designed for Recirculating **Booms**

'Through Pipe' Elbow w/ Body Clamp Use with #27382-00 'Through Pipe'

Boom End Adapters ONLY

#27382-00 to	Module Orientation	
Flange	Outward Facing	Inward Facing
3/8" Inlet	273 <u>7</u> 5-00	273 <u>7</u> 6-00
21/32" Inlet	273 <u>7</u> 7-00	273 <u>7</u> 8-00

1" Quick-Nut (QN100) Boom Fittings & Stainless Steel Tube

The QuickNut Fifting & SST Advantage

Lighter Booms - Wilger SST

weighs 66% of aluminum weighs 23% of sch40 pipe Lighter than hose

Lower Cost

compared to other pipe plumbed sprayer booms

Recirculating Booms

Compatible boom fittings & tubing for building recirculating booms

Less Chemical Residue

compared to hose-plumbed sprayers

High Flow Boom Pipe

Maintains 1" pipe outside diameter, but inside diameter flows like 1-1/4'

QN100 Fittings for a Conventional Sprayer Boom

Contact Wilger for Custom Boom Tube & Hole Configurations for your sprayer boom.

[CANADA] Wilger Industries Ltd. 1 (833) 242-4121 info@wilger.net

[USA] Wilger Inc. 1 (877) 968-7695 WilgerESC@WilgerESC.com 25161-01 25160-02

25160-03

25171-00

Quick-Nut (QN100) Joint to Hose Barb

PROGRAMMA

Example of a few possible configurations of 1" Quick-Nut (QN100) Sprayer Fittings

Stainless Tube (SST) to Boom End Flush Valve (BEFV)

25160-02 25171-00

Sweep Tee to Stainless Tube (SST) 41591-00

QN100 Flared End

Sweep Tee to Hose Barb

25160-02

25160-03

25160-01

Boom End Long Handle Male QN

For QN100 Connections

25172-00 Sweep Tee

Straight Barb

QN100 Connectors & Components

Easy to use boom end fittings and connectors to adapt

1" Wilger Stainless Steel Tubing (SST) to QN100 fittings					
	Component	Description	Part#		
	SS Tube End	Female Thread End, 2pc	25170-00		
	Adapters	Male Thread End, split ring	25171-00		
	Quick Nut	Nut with QN100-F Thread	25160-03	2	
	Plug	QN100 x Plug Cap	25163-01	- ا	
	O-ring for QN100	#219 O-ring, FKM	25160-02		
	Connections	#219 O-ring, viton	25160-v2		
	Threaded	QN100 x 3/4" NPT-F Thread	25164-01		
	Adapters	1" NPT-F x QN100M Bushing	25137-00		
	Boom Tube	Half Clamp, for 1" SST (1.31" OD)	41591-00		
	Clamps	Half Clamp, for 1-1/4" Tube	41590-00	ے ا	
		BEFV Cover Cap	25175-10	2	
	Replacement	BEFV Seal Repair Kit (2 valves)	25175-11		
	Parts	BEFV Handle, Long	25175-13		

25160-02

Component	Description	Part#]
SS Tube End	Female Thread End, 2pc	25170-00]
Adapters	Male Thread End, split ring	25171-00]
Quick Nut	Nut with QN100-F Thread	25160-03] ,
Plug	QN100 x Plug Cap	25163-01	1
O-ring for QN100	#219 O-ring, FKM	25160-02]
Connections	#219 O-ring, viton	25160-v2]
Threaded	QN100 x 3/4" NPT-F Thread	25164-01]
Adapters	1" NPT-F x QN100M Bushing	25137-00]
Boom Tube	Half Clamp, for 1" SST (1.31" OD)	41591-00]
Clamps	Half Clamp, for 1-1/4" Tube	41590-00	1.
	BEFV Cover Cap	25175-10	1
Replacement	BEFV Seal Repair Kit (2 valves)	25175-11]
Parts	BEFV Handle, Long	25175-13]
	BEFV Handle, Short	25175-03	1

25170-00 [2-piece female thread adapter] #25170-01 [Female Thread] #25170-02 [Lock Sleeve]

25175-10

2x 41591-00

25164-01

25163-01 QN100 to 1" Bushing

QN100 Tee Fittings

Compact & lightweight sweep tees for any sprayer boom configuration.

Description	Part#
QN100 Flare x QN100M x QN100M	25172-00
1" Hose x QN100M x QN100M	25168-00
1-1/4" Hose x QN100M x QN100M	25169-00

QN100 Hose Barb Fittings

Compact & lightweight hose barb fittings for any sprayer boom configuration.

Size/Style	Description	Part#
1" HB	QN100 x 1" HB, Straight	25166-01
x QN100	QN100 x 1" HB, 90° Sweep	25167-01
1-1/4"	QN100 x 1-1/4" HB, Straight	25160-01
Hose Barb	QN100 x 1-1/4" HB, 45° Sweep	25162-01
x QN100	QN100 x 1-1/4" HB, 90° Sweep	25161-01

QN100 & 1" NPT Boom End Flush Valves

Compact valve for full-drain flushing of booms.

	<u> </u>	
Type	Description	Part#
QN100	QN100 BEFV, Short Handle	25175-V0
QN100	QN100 BEFV, Long Handle	25175-LV0
1" NPT-F	1" NPT BEFV, Short Handle	25176-V0
	1" NPT BEFV, Long Handle	25176-LV0
•		

25175-03

1/2" Quick-Nut (QN50) Boom Fittings & Stainless Steel Tube

QN50 Fittings for a Conventional Sprayer Boom

Contact Wilger for Custom Boom Tube & Hole Configurations for your sprayer boom. [CANADA] Wilger Industries Ltd.

1 (833) 242-4121 info@wilger.net

[USA] Wilger Inc. 1 (877) 968-7695 WilgerESC@WilgerESC.com

Example of a few possible configurations of 1/2" Quick-Nut (QN50) Sprayer Fittings

For QN50 Connections

25120-02

Stainless Tube (SST) to Plug Cap

25120-02

25131-00

25120-03

Sweep Tee to Stainless Tube (SST) 41580-00 25129-00 25120-02

25120-03 Sweep Tee to Hose Barb 25120-03 25121-01 **25128-00** Sweep Tee

Sweep 90°

25123-01

25120-02

Quick-Nut (QN50) thread

to Hose Barb

QN50 Connectors & Components

25130-00

Easy to use boom end fittings and connectors to adapt 1/2" Wilger Stainless Steel Tubing (SST) to QN50 fittings.

Description	Part#
Female Thread End, 2pc	25129-00
Male Thread End, split ring	25130-00
Nut with QN50-F thread	25120-03
QN50 x Plug Cap	25131-01
#116 O-ring, FKM	25120-02
#116 O-ring, viton	25120-V2
QN100 x 1/4" NPT-F Thread	25127-01
Half Clamp, 1/2" SST (0.84" OD)	41580-00
	Female Thread End, 2pc Male Thread End, split ring Nut with QN50-F thread QN50 x Plug Cap #116 O-ring, FKM #116 O-ring, viton QN100 x 1/4" NPT-F Thread

Two Half-Clamp

2-piece kit: #25129-01 [Nut] #25129-02 [Sleeve] 25130-00

QN50 Tee & Hose Barb Fittings

Compact & lightweight tee & hose barb fittings for any sprayer boom configuration.

Size/Style	Description	Part#
TEE	QN50M x QN50M x QN50M	25128-00
1/2" Hose	QN50 x 1/2" HB, Straight	25120-01
Barb	QN50 x 1/2" HB, 45° Sweep	25124-01
x QN50	QN50 x 1/2" HB, 90° Sweep	25122-01
3/4" Hose	QN50 x 3/4" HB, Straight	25121-01
Barb	QN50 x 3/4" HB, 45° Sweep	25125-01
x QN50	QN50 x 3/4" HB, 90° Sweep	25123-01
	_	

Case® Thin Wall Stainless (TWS) Tube Fittings

41400-03

25160-04

Easy to use boom end fittings and connectors to adapt to 1" Case Thin walled stainless steel sprayer booms.

Component	Description	Part#
TMO Mala Tala	Male End Adapter, Left Thread	41400-04
TWS Male Tube End Adapter (3pc)	Male End Adapter, Right Thread	41400-05
End Adapter (Spc)	Male End Adapter, Binding Nut	41400-02
Coupler	TWS-F to QN100-F Coupler	41401-01
Quick Nut	TWS Nut, use with QN100 HB	41400-03
O-ring for TWS	#209 square O-ring, FKM	25160-04
Connections	#209 square O-ring, viton	25160-v4
Threaded	1" NPT-F x TWS-M Bushing	41403-00
Adapters	1" NPT-F x TWS-M Bushing kit	41403-v0
Auapters	w/ o-ring	41403-00
Boom Clamp	Half Clamp, for 1" TWS (1.31" OD)	41591-00
	Flush Valve, Short Handle	41402-V0
Boom End Flush	Flush Valve, Long Handle	41402-LV0
Valves (BEFV) &	BEFV Seal Repair Kit (2 valves)	25175-11
Replacement Parts	BEFV Cover Cap	25175-10
nepiacement raits	BEFV Handle, Long	25175-13
	BEFV Handle, Short	25175-03

Compact Handle

25175-10 piece Adapter TWS Male Thread #41400-04 [l eft] #41400-05 [Right] #41400-02 [Binding Nut]

Adapting a TWS Flush Valve to 1" NPT-M End A bushing kit can adapt to 41403-00

25123-01

TWS Flush Valves

Compact & Robust

Full Drain Flush Valve

Case TWS BEFV

41402-LV0

any 1" NPT-M pipe end 41403-v0

41402-V0

Hose Barb Fittings for TWS

QN50-M Thread 3/4" NPT Compatible

25128-00

TWS Connectors are compatible with QN100 Hose Barb Fittings & Accessories

arrice rices bars rittings arresection		
Size/Style	Description	Part#
Plug	QN100 x Plug Cap	25163-01
Adapters	QN100 x 3/4" NPT-F Thread	25164-01
1" HB	QN100 x 1" HB, Straight	25166-01
x QN100	QN100 x 1" HB, 90° Sweep	25167-01
1-1/4"	QN100 x 1-1/4" HB, Straight	25160-01
Hose Barb	QN100 x 1-1/4" HB, 45° Sweep	25162-01
x QN100	QN100 x 1-1/4" HB, 90° Sweep	25161-01

41400-01 25160-01 Assy 25160-04

Couples ON100 Female TWS-M and QN100M ends

O-ring Seal (ORS) Fittings & Components

The O-ring Seel (OFS) Fifting Adventage **Superior Fittings** Straight or 90° Chemical 0.3BAR/0.7BAR Resistance Swivel Check Valves 360° Stronger 1/4" to 1" Hose Barb Outlets Compact **Fittings** No Threads Color-coded or Sealant **ORS Metering Orifices** Required Hose Barb 1 to 4-Outlet Stackable 50 Mesh

Full Line of Metering Orifices Precision metering orifices for rates

as low as 16L/ha

1/8" to 3/8" Push-In Tube Quick Connect Outlets

Standard FKM 0-ring Seals FKM o-rings are used to maximize

Compatible with Flow Indicators

chemical resistance & durability.

Wilger ORS fittings are used for both Flow Indicator & EFM systems

ORS to ORS Check Valves

Diaphragm check valves with an ORS-F outlet for in-line outlet control to minimize dripping

Dia. Check Valve

0.7BAR Manual On/Off 20551-00

0.3BAR Manual On/Off 20551-P4

in-line strainer

ORS Manifolds

0.7bar Diaphragm Check Valve, 90°

20550-00

ORS to COMBO-JET Check Valves

Diaphragm check valves with a Combo-Jet outlet for spray tip or cap metering or spraying.

& Adapters

Check Valve Style	90° Outlet	
Dia. Check Valve	20560-00	١,
0.7BAR Manual On/Off	20561-00	
0.3BAR Manual On/Off	20561-P4	
Air-Off Operated	20562-00	
PWM/no-check	20563-00	
		_

ORS Hose Barb Inlets/Outlets

20552-00

O-ring seal hose barb inlets and outlets. Compatible with all ORS metering orifices.

Hose Barbs	Orientation	Part#
1/4"	Straight	20500-00
3/8"	Straight	20501-00
3/6	90°	20511-00
1/2"	Straight	20502-00
	90°	20512-00
5/8"	90°	20514-00
3/4"	Straight	20503-00
3/4	90°	20513-00
1"	Straight	20504-00
	90°	20515-00

ORS Outlet Adapters & Plugs

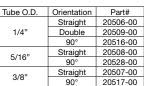
O-ring seal outlets with female threads, plugs and more. Compatible with all ORS metering orifices for metering flow.

20010 00	20010 00	20020
Type	Orientation	Part#
1/4" NPT-F	Straight	20519-00
	90°	20518-00
ORS x Sq Lug	Straight	20549-00
ORS Plug	Straight	20529-00

ORS x Square Lug adapter adapts to any square lug nozzle cap (e.g. Teejet/Hypro/ Varitarget). ¹Ensure hoses connected are supported well

ORS End Caps & Adapters

O-ring seal end caps are used on any ORS-M ports


Style & Size		Part#
End C	Сар	20521-00
	3/8"	20544-00
Straight	1/2"	20545-00
Hose Barb	3/4"	20547-00
	1"	20548-00
Durch in Tube	1/4"	20540-00
Push-in Tube (seals on O.D.)	5/16"	20541-00
(Seals Off O.D.)	3/8"	20542-00
	1/4"	20535-00
NPT-F Thread	3/8"	20536-00
	1/2"	20537-00
NPT-M Thread	1/4"	20530-00

ORS Push-in-Tube Outlets

O-ring seal quick-connect outlets that seal around the outside diameter of a tube. Compatible with ORS orifices

Push-in-tube Splitter

O-ring Seal (ORS) Parts & Manifolds

PRO TIP: Lubricate ORS fittings before assembly

When assembling any flow indicator or 0-ring seal (ORS) parts, using a touch of lubricant (e.g. liquid silicone) on the O-ring makes assembly easy.

ORS In-line Strainer

In-line strainer with removable 50-mesh cartridge can be reversed for universal flow direction.

Replacement Strainer 20576-02

20576-00 Strainer Assembly [50 Mesh]

Description

ORS Tees & Other Fittings

Description

90° ORS Elbow [M x F]

ORS Tee w/ 1/4" NPT-F [M x M x F w/ 1/4" NPT-F]

3/8" x Blind ORS Tee [Blind F x M x 3/8" NPT-F]

3/8" NPT-F x ORS Tee [F x M x 1/8" NPT-F]

2-Outlet ORS-F Splitter [FxFxM]

1" NPT-F x ORS Tee [M x M x 1" NPT]

A variety of fittings for splitting manifolds, ORS-F outlets or other auxiliary functions.

20520-00

20526-00

20523-00

20524-00

20527-00

20525-00

20527-00 1/4" NPT-F Port can be drilled out for pressure gauge installation

Part# ORS Strainer Assembly [50 Mesh] 20576-00 Replacement Strainer [50 Mesh] 20576-02

2" ORS Spacer Assy [no strainer] 20576-05

20576-05

O-ring Seal (ORS) Manifolds

ORS manifolds can be configured and plumbed to any size, shape or configuration to suit any application equipment needs such as liquid fertilizer manifolds, estate sprayer manifolds, or any other liquid manifold plumbing.

20571-00

20572-00

20573-00

20574-00

Model	O-ring	Part#
1-Outlet Manifold	FKM	20571-00
1-Outlet Manifold	Body only	20571-01
2-Outlet Manifold	FKM	20572-00
2-Outlet Marillold	Body only	20572-01
3-Outlet Manifold	FKM	20573-00
3-Outlet Manifold	Body only	20573-01
4-Outlet Manifold	FKM	20574-00
4-Outlet Manifold	Body only	20574-01

20573-01 Body only (no u-clips or o-rings)

Fittings Swivel 360°

No Threads or Sealant Required

Stronger, Compact **Fittings**

Replacement Parts for ORS & Flow Indicator Fittings

Replacement components for ORS Fittings/Kit

riopiacoment components for one rittings							
Product	Type/Material	Part#					
Ball Retainer	Polypro	20460-02					
U-clip	302 SS	20460-02					
Flow Indicator Kit	Manifold Feed	20460-11					
w/o Indicator Body	Isolated Feed	20480-02					
O-rings for	FKM	20460-03					
ORS fittings	VITON	20460-15					
O-rings for	FKM	40225-04					
metering orifices	VITON	40225-05					

20460-11*

*Manifold Kits include: Ball Retainer (#20460-02), 0-ring (#20460-03) 2x U-clips (#20460-04), Green Ball (#20460-08), Red Plastic Ball 40225-04 (#20460-07), Red Glass Ball (#20460-06), 1/2" SS Ball (#20460-05

Mounting Clamps for ORS

Two hole mounting clamps with 1/4" bolt-mount for ORS manifolds and flow indicators

40550-SS

MEM

Type	Part#
302 SS	40550-SS
302 SS	40551-SS
302 SS	40552-SS
	302 SS 302 SS

O-ring Seal (ORS) Metering Orifices & Charts

Precise metering orifices for metering liquid fertilizers, or chemicals. The easier-to-handle orifices fit in any O-ring seal (ORS-M) fitting port, and cannot be inserted backwards. Available in precision molded color-coded sizes or custom drilled sized orifices.

Simply input rate, speed & spacing, and get the best orifice for the job.

Metering Orifice

type, seal & ORS Orifice Part#

Color

21500-V01

Color-coded Consistent Rust-proof

Molded ORS Orifice | Custom Drilled Orifice | Blank Orifice/Plug VITON O-ring FKM/viton O-ring FKM/viton O-ring 21XXX-00/21XXX-V0 21000-00/2100-V0 21500-VXXX Color-coded' Black

Calculating required flow for metering orifice selection

To determine the flow rate (or application rate), use the following equations & density conversion chart:

W = Outlet Spacing (meters) conv = Conversion Factor based on specific gravity/weight of liquid

(per outlet)

Litres/minute = L/HA x kph x W x conv

600 x L/min (per outlet) kph x W x conv

EASY-TO-USE ORS orifice and ball selector calculator available @ www.wilger.net

Solution Weight (lbs/ us gallon)	Specific Gravity	Conversion Factor (conv)
8.34 (Water)	1.00	1.00
10.65 (28-0-0)	1.28	1.13
11.65 (10-34-0)	1.39	1.18

	ORS Orifice Flow Rate (Litres/minute) ORS Orifice Flow Rate (Litres/minute))											
	Part #	1 _{BAR}	1.5 _{BAR}	1.75 _{BAR}	2 BAR	2.25 _{BAR}	2.5 BAR	3 bar	Part #	1 _{BAR}	1.5 _{BAR}	1.75 _{BAR}	2 BAR	2.25 _{BAR}	2.5 BAR	3 bar
	21009-XX	0.024	0.029	0.031	0.033	0.036	0.037	0.041	21075-XX	1.579	1.934	2.089	2.233	2.073	2.497	2.735
	21011-XX	0.037	0.045	0.049	0.052	0.055	0.058	0.064	21078-XX	1.763	2.160	2.333	2.494	2.315	2.788	3.054
	21013-XX	0.050	0.061	0.066	0.071	0.075	0.079	0.087	21500-V08	1.816	2.224	2.402	2.568	2.384	2.871	3.145
	21015-XX	0.066	0.081	0.087	0.093	0.099	0.104	0.114	21081-XX	1.869	2.289	2.472	2.643	2.453	2.955	3.237
//	21500-V003	0.068	0.084	0.090	0.097	0.103	0.108	0.118	21083-XX	2.053	2.514	2.716	2.903	2.695	3.246	3.556
r M	21018-XX	0.095	0.116	0.125	0.134	0.142	0.150	0.164	21086-XX	2.132	2.611	2.820	3.015	2.799	3.371	3.692
Š	21500-V005	0.113	0.139	0.150	0.160	0.170	0.179	0.196	21089-XX	2.237	2.740	2.959	3.164	2.937	3.537	3.875
*	21020-XX	0.118	0.145	0.157	0.167	0.178	0.187	0.205	21500-V10	2.290	2.804	3.029	3.238	3.006	3.620	3.966
-	21022-XX	0.139	0.171	0.185	0.197	0.209	0.221	0.242	21091-XX	2.395	2.933	3.168	3.387	3.144	3.787	4.148
	21500-V007	0.153	0.187	0.202	0.216	0.229	0.241	0.264	21093-XX	2.500	3.062	3.308	3.536	3.283	3.953	4.33
	21025-XX	0.179	0.219	0.237	0.253	0.268	0.283	0.310	21096-XX	2.684	3.288	3.551	3.796	3.524	4.245	4.65
i.	21026-XX	0.197	0.242	0.261	0.279	0.296	0.312	0.342	21500-V125	2.842	3.481	3.760	4.020	3.732	4.494	4.92
K	21027-XX	0.208	0.255	0.275	0.294	0.312	0.329	0.360	21102-XX	2.974	3.642	3.934	4.206	3.904	4.702	5.15
ķ	21028-XX	0.224	0.274	0.296	0.316	0.336	0.354	0.387	21104-XX	3.079	3.771	4.073	4.355	4.043	4.869	5.33
S (4)	21500-V01	0.229	0.280	0.303	0.324	0.343	0.362	0.397	21107-XX	3.342	4.094	4.422	4.73	4.388	5.285	5.79
	21031-XX	0.290	0.355	0.383	0.409	0.434	0.458	0.501	21500-V15	3.421	4.190	4.526	4.84	4.492	5.410	5.93
Š	21500-V015	0.342	0.419	0.453	0.484	0.513	0.541	0.593	21110-XX	3.527	4.319	4.665	4.99	4.630	5.576	6.11
	21035-XX	0.368	0.451	0.487	0.521	0.553	0.583	0.638	21113-XX	3.737	4.577	4.94	5.29	4.907	5.909	6.47
S.	21037-XX	0.395	0.483	0.522	0.558	0.592	0.624	0.684	21116-XX	3.921	4.803	5.19	5.55	5.148	6.200	6.79
4	21039-XX	0.447	0.548	0.592	0.633	0.671	0.707	0.775	21120-XX	4.053	4.964	5.36	5.73	5.321	6.408	7.02
	21500-V02	0.474	0.580	0.627	0.670	0.711	0.749	0.821	21125-XX	4.474	5.480	5.92	6.33	5.874	7.074	7.75
X	21041-XX	0.500	0.612	0.662	0.707	0.750	0.791	0.866	21500-V20	4.553	5.576	6.02	6.44	5.978	7.199	7.89
	21043-XX	0.526	0.645	0.696	0.744	0.691	0.832	0.912	21128-XX	4.658	5.71	6.16	6.59	6.116	7.365	8.07
	21500-V025	0.579	0.709	0.766	0.819	0.760	0.915	1.003	21130-XX	4.843	5.93	6.41	6.85	6.358	7.657	8.39
	21046-XX	0.605	0.741	0.801	0.856	0.795	0.957	1.048	21136-XX	5.422	6.64	7.17	7.67	7.118	8.572	9.39
374	21047-XX	0.632	0.774	0.836	0.893	0.829	0.999	1.094	21140-XX	5.764	7.06	7.62	8.15	7.567	9.113	9.98
ŝ	21049-XX	0.684	0.838	0.905	0.968	0.898	1.082	1.185	21144-XX	5.974	7.32	7.90	8.45	7.844	9.446	10.35
ŗ	21500-V03	0.684	0.838	0.905	0.968	0.898	1.082	1.185	21147-XX	6.132	7.51	8.11	8.67	8.051	9.696	10.62
3	21051-XX	0.737	0.903	0.975	1.042	0.967	1.165	1.276	21150-XX	6.58	8.06	8.70	9.30	8.638	10.403	11.40
*	21052-XX	0.763	0.935	1.010	1.079	1.002	1.207	1.322	21152-XX	6.79	8.32	8.98	9.60	8.915	10.736	11.76
į,	21055-XX	0.869	1.064	1.149	1.228	1.140	1.373	1.504	21156-XX	7.08	8.67	9.37	10.01	9.295	11.194	12.26
4	21500-V04	0.921	1.128	1.219	1.303	1.209	1.456	1.595	21161-XX	7.45	9.12	9.85	10.53	9.779	11.776	12.90
*	21060-XX	1.026	1.257	1.358	1.452	1.348	1.623	1.778	21166-XX	7.82	9.57	10.34	11.05	10.262	12.359	13.54
	21061-XX	1.053	1.289	1.393	1.489	1.382	1.665	1.823	21172-XX	8.58	10.51	11.35	12.13	11.264		14.86
	21063-XX	1.132	1.386	1.497	1.600	1.486	1.789	1.960	21177-XX	9.11	11.15	12.05	12.88	11.955	14.398	15.77
	21500-V05	1.158	1.418	1.532	1.638	1.520	1.831	2.006	21182-XX	9.50	11.64	12.57	13.44	12.474	15.022	16.46
7	21064-XX	1.158	1.418	1.532	1.638	1.520	1.831	2.006	21187-XX	10.05	12.31	13.30	14.22	13.199		17.41
	21065-XX	1.184	1.450	1.567	1.675	1.555	1.873	2.051	21196-XX	11.16	13.67	14.76	15.78	14.651	17.644	19.33
)(=)	21067-XX	1.263	1.547	1.671	1.787	1.659	1.997	2.188	21205-XX	12.08	14.80	15.98	17.08		19.100	20.92
	21500-V06	1.369	1.676	1.810	1.935	1.797	2.164	2.370	21213-XX	13.00	15.92	17.20	18.39		20.557	22.52
4	21070-XX	1.395	1.708	1.845	1.973	1.831	2.205	2.416	21218-XX	13.58	16.63	17.96	19.21		21.472	23.52
Š	21073-XX	1.500	1.837	1.985	2.122	1.970	2.372	2.598	21234-XX	15.82	19.37	20.92	22.37		25.009	27.40
١	21250-XX 18.24 22.34 24.13 25.79 23.945 28.838 31.59															

Wilger Visual Ball Flow Indicators

The Flow Incleator Advantage

See Any Application Accurately

1/4" Bolt mount on each column **Fittings** Swivel 360°

Clear Sight Column

Superior Chemical Resistance

Simple. without Electronics

No Threads or Sealant Required

Manual ON/OFF Check Valves
Easy to turn off for maintenance or use liquid kits on alternate spacing

Larger Metering Orifices Easier handling & cleaning

> Consistent Metering & Easy Cleaning

Ball Suspended Higher Indicates over flow or leaf

Desired Flow

Ball Suspended Lower

Indicates blockage or plug

Simple Operation. Critical Feedback.

Example of flow indicator function; Overlay colors are for visual purposes only

Flow Indicators are used on Planting Equipment & Sprayers to indicate relative flow blockage or overage.

Manifold Feed - Ball Flow Indicators

For monitoring many lines from a single feed (e.g. Liquid fertilizer kits for a planter)

Retainer	
Sight Column	
Red Glass Ball	
/4" Bolt-Mount Hole	3 T
Stackable JRS-F port for inlet	180 PSI G

ĺ	Model	Kit Type*	Part#
	Ultra Low Flow	Bulk Kit	20475-BULK
۱		Bagged Kit	20475-00
İ	[0.037-0.910 L/min]	Body Only	20475-01
	Low Flow	Bulk Kit	20470-BULK
۱		Bagged Kit	20470-00
İ	[0.19-2.46 L/min]	Body Only	20470-01
	Standard Flow	Bulk Kit	20460-BULK
		Bagged Kit	20460-00
	[0.26-10.22 L/min]	Body Only	20460-01

*Manifold Kits include: Indicator Body, Ball Retainer (#20460-02), O-ring (#20460-03), 2x U-clips (#20460-04), Green Ball (#20460-08), Red Plastic Ball (#20460-07), Red Glass Ball (#20460-06), 1/2" SS Ball (#20460-05)

Flow Indicator & O-ring seal (ORS) Connection Specifications*

Max Operating Pressure: 100psi / 7BAR

Max Metered Flow Rate: 30 L/min per column Maximum Operating Temp: 85°C O-ring Seals: FKM (std) / Viton U-clip: Stainless Steel (302)

ORS Fittings: Glass-reinforced Polypropylene Flow Column Material: TPX™ (Polymethylpentene)

Isolated Feed - Ball Flow Indicators

For monitoring single lines from individual feeds (e.g. Squeeze pump monitoring, chemical injector pumps)

Model	Kit Type**	Part#
Low Flow	Bulk Kit	20490-BULK
[0.19-2.46 L/min]	Bagged Kit	20490-00
[0.19-2.46 L/min]	Body Only	20490-01
Standard Flow	Bulk Kit	20480-BULK
[0.26-10.22 L/min]	Bagged Kit	20480-00
[0.26-10.22 L/min]	Body Only	20480-01

**Isolated Kits include: Flow Indicator Body, Ball Retainer (#20460-02), U-clip (#20460-04), Green Ball (#20460-08), Red Plastic Ball (#20460-07), Red Glass Ball (#20460-06), 1/2" Stainless Ball

Inlet feed uses Combo-Jet cap. Refer to COMBO-JET caps & adapters.

How to Tell Columns Apart? Check the top of the column

(Required Storage for Flow Indicator Columns

Wilger Flow Indicator columns are made of a specialty UV-stabilized compound (TPX™) that maximizes chemical resistance, providing compatibility for a huge range of chemical applications As with any plastic, UV exposure degrades the flow indicator columns.

To maximize flow indicator column clarity & longevity, completely cover

the flow indicator columns from UV exposure (sun/etc.) when not in use.

PRO TIP: Using two balls simultaneously helps

If a lighter ball is suspended too high, using the next heavier ball below can help cover changes in application rates or speeds.

Red Celcon Ball Lower Rate/Speed 🗸 Red Glass Ball Higher Rate/Speed

Wilger Visual Ball Flow Indicators - Balls & Setup Guide

Flow Indicator Balls & Selection Chart

Weighted balls are used inside flow indicator columns and within the operational flow range, will suspend within the column, showing relative flow rate to other flow columns.

Dort #	Flow Indicator Columns & Flow Ranges*			
Part #	Ultra Low Flow	Low Flow	Standard Flow	
20460-13	0.037-0.151	0.19-0.45	0.26-0.95	
	L/min	L/min	L/min	
20460-08	0.037-0.151	0.19-0.45	0.26-0.95	
	L/min	L/min	L/min	
20460-07	0.075-0.23	0.23-0.61	0.38-1.32	
	L/min	L/min	L/min	
20460-18	0.075-0.23	0.23-0.61	0.38-1.32	
	L/min	L/min	L/min	
20460-14	0.075-0.23	0.23-0.61	0.38-1.32	
	L/min	L/min	L/min	
20460-06	0.23-0.49	0.45-0.98	0.79-2.73	
	L/min	L/min	L/min	
20460-05	0.49-0.91	0.68-2.46	1.51-6.44	
	L/min	L/min	L/min	
20460-10	n/a	n/a	3.78-10.22 L/min	
	20460-08 20460-07 20460-18 20460-14 20460-06 20460-05	Part # Ultra Low Flow 20460-13	Part # Ultra Low Flow Low Flow 20460-13	

Applying Dark Fertilizers & Variable Rate Applications

With some liquid fertilizers and products being darker (e.g humic acid content), consider a fev tips that may help visual representation of flow

For Red Liquids

(e.g. Paralign Fertilizer) White backboard for improved visibility. White celcon ball for red

For Dark Liquids

(e.g. Humic Acid) Pink celcon ball for black & dark liquids

For Variable Rate

Considering using two balls to better illustrate changes in flow rate. Select a lighter ball for the lower rate, and heavier for the higher rate

*Density/Viscosity of liquid used can effect operating range. In very dense liquids, balls may float.

Ball Selection Example

Liquid Density: 1.278 kg/L

Speed: 8 kph

Outlet Spacing: 76cm

Ultra-Low Flow Rate: 40L/Ha Flow Rate: 0.458 L/min Ball: Red Glass

Low Flow Rate: 100L/Ha Flow Rate: 1.146 L/min Ball: 1/2" Stainless

Standard Flow Rate: 200L/Ha Flow Rate: 2.292 L/min Ball: Red Glass

Guide to Building a Liquid Kit with Flow Indicator Manifolds

STEP • Select: Manifold-Feed or **Isolated-Feed** Style Flow Columns

Choose the style of flow column that suits the application equipment being monitored

STEP 2 Determine Flow Indicator Column Size (e.g. Ultra Low Flow, Low Flow, Standard Flow)

Depending on the flow rates required, select the flow column that would provide the best fit to the required flow rate or range. Usually this is accomplished by finding a column size that has your flow rate towards the middle of the range or higher.

STEP 🕙 Select: Flow Indicator Balls to use

Consult the ball flow chart to determine which balls should be used. It can be optional to use two balls to illustrate a flow rate range.

STEP 4 ORS Check Valves [Optional]

A variety of check valves are available. Typically an ORS to ORS check valve would be used unless adapting a manifold to combo-jet caps. One check valve is required per flow indicator.

STEP 🗿 ORS Inlet Feeds, Tees, & Strainers

Determine how many manifolds are required, whether the manifolds are fed with a Tee fitting, as well as whether an in-line strainer will be added to each manifold. Determine the size & type of inlet fitting. One set of inlet/tee/strainer is required per manifold.

STEP 3 ORS Metering Orifices [Optional]

Any metering manifold should have a means to meter the flow for each row to keep rows consistent. Without a metering orifice, the flow rates between rows can vary greatly. One metering orifice would be required per flow indicator column.

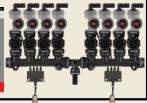
STEP 🕖 ORS Outlet

Select the size, and style of outlet to be used for each row of product. Consider applying a small bit of lubricant (e.g. liquid silicone) on the o-ring to air in easy installation of outlets and other ORS fittings. The outlet would hold the ORS metering orifice, if used.

STEP 😉 ORS End Caps & Adapters

A variety of end caps are available as adapters which can be used for many situations, but typical an ORS end cap would be used. Two end caps are required per manifold if a Tee fitting is used.

Do you plant at night or in low visibility? Take a look at Wilger's Electronic Flow Monitoring


Wilger's row-by-row flowmeter uses the same ORS parts and manifolds, and can be simply added in-line for existing manifolds.

Simply add a flowmeter for each row, and connect the electronic harness to see actual flow rate on each row (up to 196 rows), for flow rates of 0.15-5.8 L/min.

Flowmeter can also be installed on flow indicators to provide greater accuracy

Wilger Electronic Flow Monitoring System

egaliavia gritolinom woll einerbeele ent

See Any Application with Row-by-Row Accuracy

The Wilger electronic flowmeter (EFM) is a serviceable flowmeter designed & built specifically for agricultural chemical & liquid applications.

Fittings Swivel 360°

Crystal Clear Flowmeter

Superior Chemical Resistance

Perfect for Low Visibility

High Accuracy **Flowmeter**

Patented Flowmeter Jets Canadian Patent No. 2951789 ALIS Patent No. 2017376849

Crystal Clear Flowmeters Enables easy system troubleshooting & verification

Monitors Huge Flow Range Accurately measures flow rates of 0.15-5.8 L/min per row

How It Works High Resolution Hall-Effect Sensor & Ceramic Magnet combo provide accurate pulse frequency to determine flow

Wilger Flow Monitoring System v2.6.4 Starter Rate: 10.0 L/ha Liquid Nitrogen Liquid Rate: 21.7 L/ha Innoculant nnoculant

FREE EFM APP POWERED BY

AGTRON The Electronic Flow Monitoring system (powered by Agtron) requires an Android 10 OS Tablet or newer

Trouble-free Connectors

Keyed Deutsch connectors ensure weather-sealed wiring

Monitor up to 3 Products

Simultaneously monitor up to 3 products within the same system

Monitor Any Sized Equip.

Monitor up to 200 rows or outlets on any equipment

Custom High/Low Alarms Customize threshold alarms

Custom Screen Layouts Customize screen layouts between products, sections, or any other way

Chemical Resistance Clear TPX material provides

visual & non-stick surface

Easy Retrofit Easily retrofits to any

existing ORS or Flow Indicator Fittings

Simple Harnessing Composed of an ECU with dairy-chained product nodes & sensors

WIFI communication ECU generates WIFI

straight into the cab

Build your Electronic Flow Monitoring System with help from www.wilger.net

Use the new EFM system parts kit builder available at www.wilger.net. Simply input your implement size and layout and receive a parts list & quote. It just takes a minute.

Need help with EFM system SETUP, USE & Troubleshooting? Check www.wilgernet

EFM System Manual

The manual is accessible online (wilger.net) and within the EFM app via the (?) button. It contains Setup, Troubleshooting. Considerations, Maintenance and more.

Video Setup Guide

The video describes in detail considerations and how to reference sensor locations properly and usage in the EFM system app.

Online Troubleshooting

The dedicated page on the website has the most common recent fixes, guides, and troubleshooting information. Check it for quick troubleshooting to save time.

Wilger Electronic Flow Monitoring System Components

Electronic Flowmeters & Jets

A clear flowmeter that connects to any ORS outlets, with an accurate flow range of 0.15-5.8 L/min, using patented flow stabilizing jets.

20580-00 EFM KIT

Product

Electronic Flowmeter Body

[0.15-5.8 L/min

Replacement Jets

(without 50 mesh

snap-in strainer)

20580-06 Body Assembly

IMPROVED ERM JET DESIGN

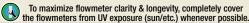
shipping in 2024
1Jets now include a lip for easier

20580-00 20580-06 20580-01 20581-01 20581-03 20581-05 20581-07

insertion and removal without

Description Flowmeter Assy Kit

Body Assembly (no jets)

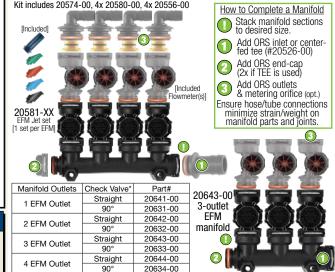

Body Only (clear plastic)

Blue (0.68 to 3.71 L/s

en (up to 0.45 L/MIN

Required Storage for Flowmeters

Wilger Flowmeters are made of a specialty UV-stabilized compound (TPX") that maximizes chemical resistance, providing compatibility for a huge range of chemical applications. As with any plastic, UV exposure degrades the flow indicator columns



Electronic Flowmeter Manifolds

Pre-assembled manifolds [1-4 Outlets] with a flowmeter and check valve. Simply assemble manifolds, add inlet/outlets, caps and sensor cables.

20644-00 Four Outlet EFM Manifold Kit w/ Check Valve

0.3bar check valves available: change '-00' to '-P4'. For ultra-low flow (<0.01 us gpm), 0.3bar may be required.

DEMO ECU & Small Planter Kit (16 or less rows, non-expandable)

The following is a Compact ECU DEMO unit, which can be used for showroom/demonstrations, but also functional for planters with 16 rows or less being monitored. The CAN to POWER/USB adapter can be used where WIFI is not an option (tradeshows, etc.). The unit also broadcasts via WIFI.

Product	Description of DEMO Kit Parts	Part#
DEMO ECU	DEMO ECU with built-in 16CH node. One per Demo unit (requires 12v x 1.25 amp)	20625-01
DEMO 16CH Harness	DEMO ECU Harness, with A/B/C/D for up to 4 quad- sensor cables to be connected	20625-02
DEMO Power Supply Harness	CAN to USB (for wired tablet without WIFI) & 12v Power Cable (2-wire, 2m length). USB-A port is powered to supply tablet power.	20625-03
Quad-Sensor Cable	A normal quad-sensor cable, used in any Wilger EFM systems via 6-pin connector. Connects for the A/B/C/D of 20625-02. Order 4x 20585-00 for full 16 sensors.	4x 20585-00
Antenna (7")	If ECU connection is via WIFI, an antenna should be used to connect to the tablet.	20603-03
EFM Manifolds	1,2,3, or 4-outlet manifolds with check valves and an included EFM flowmeter. Simply order inlet/outlets/tee and end caps to complete manifold.	20644-00 (4-outlet)

Example 16-row manifold for demonstration

EFM DEMO System Parts Checklist

ELECTRONICS Parts 1x DEMO ECU (#20625-01)

1x Demo Product Harness (#20625-02) 1x ORS Tee (#20526-00)

1x Antenna (#20603-03)

4x Quad-sensor cable (4x #20585-00)

■ 1x Android Tablet & Mount (non-Wilger) ■ 16x Metering Orifice (#21500-v03) (e.g. Samsung Tab A8)

PLUMBING Parts

4x 4-Outlet Manifolds (#20644-00)

1x Demo Power/USB Cable (#20625-03) 1x 90° 1/2" Hose Inlet (#20513-00) 16x 1/4" Push-in-tube (#20516-00)

2x End Cap (#20521-00) 1x 5GPM Electric pump (non-Wilger)

Small water tank w/ plumbing

Compact ECU *parts not to scale* 20625-01

Switch for Wired USB Mode

2m Length

20625-03 CAN to 12v Power Harness

Want to show what the system looks like, without a pump? Download the app, enter info, and plug in some example sensor information, and run the app in TEST/ DEMO mode. (Simulated info) Contact Wilger for more info.

Quad-sensor cable Connects to A / B / C / D

4x 20585-00 20585-00

Wilger Electronic Flow Monitoring ECUs & Electronics

Base Electronic ECU & Kits for EFM Systems (expandable up to 196 rows/sensors)

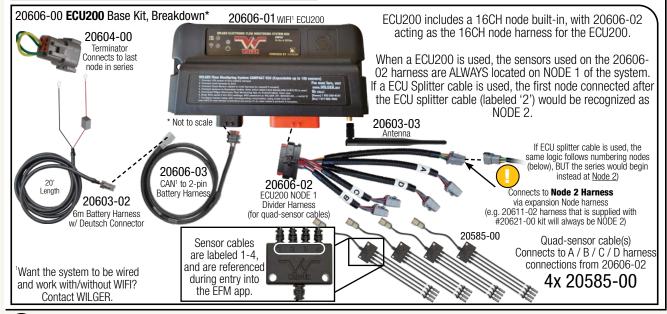
Electronic Control Units (ECU) & components used in EFM systems. ECUs are used to monitor up to 196 outlets, across up to 3 products.

Product	Kit Includes	Part#
ECU100 Base Kit ECU100, 6m 12v Battery Harness (with fuse), Terminator, Antenna		20603-00
ECU200 Base Kit	ECU200, CAN to 12v Harness, 6m 12v Battery Harness (with fuse), ECU200 Node Harness (#20606-02), Terminator, Antenna, 4x Quad- sensor cables (#20585-00)	20606-00
ECU Splitter Kit	ECU Splitter Cable, Terminator	20605-00
ECU/Node to Node	3.5m Extension Harness (Node to ECU/Node)	20616-12
Extension Harness	7.3m Extension Harness (Node to ECLI/Node)	20616-24

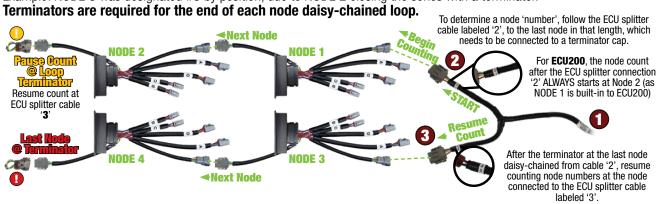
20603-00 ECU100 Base Kit, Breakdown* 20603-02 6m Battery Harness w/ Deutsch Connector Connects to last node in series Connects to First Node Harness WHEI ECU100 20603-01 WIFI ECU100

NEW ECU100 or ECU200? Whats the difference?

ECU100 and ECU200 share identical function as a controller. Both create their own WIFI signal to the tablet in the cab, sending row-by-row flowmeter information. They differ somewhat in the first node connected, and potentially the use of other components, the harnesses, and cables used. The ECU200 effectively integrates the first 16CH node, as well as provides a CAN plug for future-proofed connections.



ECU Type	ECU100	ECU200	
Combined Node?	No integrated 16CH node	First 16CH node built-in	
Expandable Size?	Yes, up to 196 sensors	Yes, up to 196 sensors	
Power Cable	2-pin 12v PWR harness	CAN to 2-pin 12v PWR harn.	
Compatibility	Both are compatible to all EFM system components		



- ① Connects to ECU100 or ECU200.
- 2 If ECU100, first node is Node 1. If ECU200, first node is Node 2. (As ECU200 has built-in Node1)
- Onnects to 2nd node series loop. Node # determined by last node in 1st series loop.

Example: NODE 3 was designated #3 by position, due to NODE 2 closing the series with a terminator.

-1111

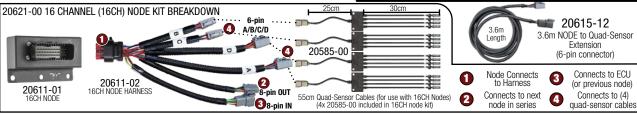
Wilger Electronic Flow Monitoring System Components

16 Channel (16CH) Product Node Kits & Components

16CH Product nodes provide communication between sensors and ECU.

Product	Description	Part#		
16CH Node Kit	incl. 16CH Node, 16CH Harness, 4x Quad-sensor cables	20621-00		
Quad-Sensor Cable	4-Sensor Cable (55cm long) for 16CH Node	20585-00		
16CH Node/Harness	incl. 16CH Product Node, 16CH Node Harness	20611-00		
16CH Harness Cap	16CH Harness Cover Cap	20612-00		
Sensor Cover Cap	Covers a single sensor on a quad-sensor cable	20585-01		
Node to Quad-Sensor	1.8m Extension Cable (16CH Harness to quad-sensor cable)	20615-06		
Extensions	3.6m Extension Cable (16CH Harness to quad-sensor cable)	20615-12		

Capping Unused Connections & Sensors

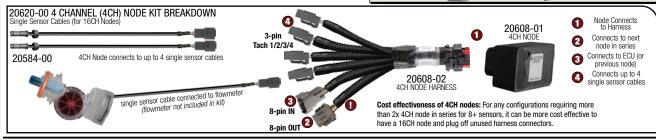

For proper function of your EFM system, each unused connection must be sealed with a node harness cover cap, sensor cap, or terminator. Unsealed Connections have increased chance of shorts, electrical shock, or damage to the system or equipment.

Unused Node Connections

Channel (4CH) Product Node Kits & Components

4 Channel Product Nodes & kits provide communication between sensors and ECU. Sensor cables cannot be interchanged between 16CH and 4CH node harnesses. 4CH nodes and sensors are available in limited stock, as Wilger is transitioning to using the 16CH node and components as standard.

Product	Description	Part#
4CH Node Kit	incl. 4CH Node, 4CH Harness, 4x 6" single-sensor cables	20620-00
4CH Node/Harness	incl. 4CH Product Node, 4CH Node Harness	20608-00
4CH Harness Cap	4CH Harness Cover Cap	20609-00
Single-Sensor	15cm single-sensor Cable for 4CH Node harness	20584-00
Cables (lim. qty)	300cm single-sensor Cable for 4CH Node harness	20584-10


Capping Unused Connections

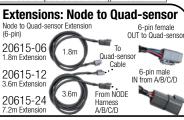
For proper function of your EFM system, each unused connection must be sealed with a 4CH node harness/sensor cover cap, or terminator.

Unused Sensor Connections #20609-00

Cap all 'last node in series' connections #20604-00

ECU Splitters, Extended Harnesses & Cables

A variety of harnesses available for alternate EFM system configurations or replacement cables and caps


Product	Description	Part#
12v Power Extension	Extends 2-pin power connection by 10m	20603-07
Antenna Extension	Extends connection to ECU antenna, 10m length	20603-05
1.2m quad-sensor cbl	1.2m Long Quad-sensor cable (1.2m/0.5m/0.5m/1.2m)	20585-04
3m Single Sensor Cbl	3m long single sensor cable	20584-10
Node to Node	3.6m Extension Cable (8-pin Harness male to 8-pin female)	20616-12
Extensions	7.2m Extension Cable (8-pin Harness male to 8-pin female)	20616-24
Node to Quad-Sensor	1.8m Extension Cable (16CH Harness to quad-sensor cable)	20615-06
	3.6m Extension Cable (16CH Harness to quad-sensor cable)	20615-12
	7.2m Extension Cable (16CH Harness to quad-sensor cable)	20615-24

10m Antenna Extension 10m co-axial antenna extension cable to bring ECLL antenna closer to the tractor 20603-05 10m Extension ECU antenna has

30m range (15m one-v

20585-04 Quad-sensor cable (for 16CH node only) === 1.2m 20584-10 3m single sensor (for 4CH node only)

Flowmeter Component Parts

Electronic flow monitoring system parts and components are easily replaceable. For individual component parts that were not listed in the above product breakdowns, find the below.

EFM, Body Assy, TPX, ORS (no jets, body assy only) 20580-06

20580-01 EFM, Body Only, TPX

20580-02 EFM, Module c/w O-ring (no sensor) 20580-08 EFM, Impeller Assembly (20580-09 + 20580-10)

20580-10 FFM. Impeller Magnet, Ceramic

20580-11 EFM, Impeller Axle Pin

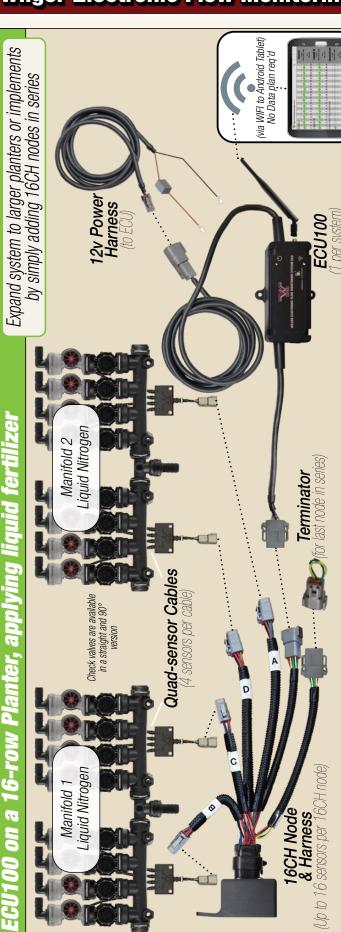
20580-13 EFM, O-Ring, #119, VITON® (for EFM module) 20583-00 EFM Sensor Cable, Single w/o Connector 20585-01

20583-00°

EFM sensor rubber cover (for unused sensor cables)

*Non-stocked/Custom Order

20580-02



Wilger Electronic Flow Monitoring System ECU100 Example

ECU100: Component Checklist for Wilger's Electronic Flow Monitoring System

As equipment & implements greatly vary, this is a simplified approach assuming the implement is fairly standard and evenly spread, with the manifold centrally located It may be cost effective to move manifolds from the wings of the implement, to the center.

- **Order 1 ECU100 kit** per system. (#20603-00)
- outlets by 16. Round up to nearest whole number. Order that many 16CH Node kits. (#20621-00) Add the # of outlets (including multiples for monitoring multiple products). Divide the total # of 4CH Node kits can be effective for 'extra' outlets in systems, but 16CH node kits are typically cost effective.
- Order 1 EFM assembly kit (#20580-00) per outlet (incl. multiples for monitoring multiple products) Alternatively, order EFM manifold kits (#20631-00 to #20634-00) to fit your requirements for sections
- Order 1 ORS Outlet (Page 16) & 1 ORS Check Valve (#20551-00) per EFM body. Order manifolds & plumbing components (& end caps) suited for the implement size.
- [Optional if metering orifice req'd] **Order an ORS orifice for each outlet**, ensure proper metering orifice size for each rate. Use Tip Wizard @ www.wilger.net or via app, to ensure proper sizing.

☐ 1x ECU100 KIT per system

1x ORS Manifold Outlet per outlet

1x ORS Outlet Fitting per outlet

1x ORS Check Valve per outlet

- 1x 16CH Node Kit per 16 outlets 1x Flowmeter (EFM) per outlet Extension harnesses if req'd
- 1x Android Tablet [Android 10 0S or newer. Avoid

1x End Cap per manifold [2x if center Tee]

1x Inlet Feed or Tee per manifold

1x Metering Orifice per outlet [or alt.] non-brand name tablets that may not be running full 0S)]

For more information, start the conversation on building your EFM system with your Wilger dealer, and for more pictures/information, visit our website at: www.WILGER.NET

EFM VIDEO TUTORIALS - Setting up EFM App on Android Tablet

Make sure to take advantage of video tutorials on initial setup and planning of EFM system

app on your Android Tablet. Videos on YOUTUBE, or accessible from www.WillGER.ner

Use the new EFM system parts kit builder available at www.wilger.net. Simply input your implement size and layout and receive a parts list & quote. Simple as that.

your EFM system liquid kit on www.WILGER.NET

Build

Wilger Electronic Flow Monitoring System ECU200 Example

ECU200; Component Checklist for Wilger's Electronic Flow Monitoring System

Since the ECU200 includes the FIRST 16CH product node, it changes the ordering checklist slightly.

Order 1 ECU200 kit per system. (#20606-00)

Add the # of outlets (incl. multiples for monitoring multiple products). **First subtract 16 outlets from** the total (as the first 16 are included with ECU200), then divide the total # of outlets by 16.

Round up to nearest whole number. **Order that many 16CH Node kits**. (#20621-00) 4CH Node kits can be effective for 'extra' outlets in systems, but 16CH node kits are typically cost effective.

Order 1 EFM assembly kit (#20580-00) per outlet (incl. multiples for monitoring multiple products) Alternatively, order EFM manifold kits (#20631-00 to #20634-00) for pre-built manifolds with flowmeters installed. m

Order 1 ORS Outlet & 1 ORS Check Valve (#20551-00 style) per EFM body

[Optional if metering orifice req'd] **Order an ORS orifice for each outlet**, ensure proper metering orifice size for each rate. Use Tip Wizard @ www.wilger.net or via app, to ensure proper sizing. Order manifolds & plumbing components (& end caps) suited for the implement size.

1x ORS Manifold Outlet per outlet 1x Inlet Feed or Tee per manifold 1x ORS Outlet Fitting per outlet 1x ORS Check Valve per outlet 1x ECU200 KIT per system, incl. 1st 16CH 1x 16CH Node Kit per adtl. 16 outlet 1x Flowmeter (EFM) per outlet Extension harnesses if req'd

PLUMBING Parts

ELECTRONICS Parts

ia WIFI to Android Table

No Data plan reg'o

For more information, start the conversation for your EFM system with your WILGER, NET Wilger dealer, and for more pictures/information, visit our website at:

1x End Cap per manifold [2x if center Tee]

1x Android Tablet [Android 8.0 0S or newer]

1x Metering Orifice per outlet [or alt.]

EFM VIDEO TUTORIALS - Setting up EFM App on Android Tablet

app on your Android Tablet. Videos on YOUTUBE, or accessible from www.WfllGER.ner Make sure to take advantage of video tutorials on initial setup and planning of EFM system

Simply input your implement size and layout and receive a parts list & quote. Simple as that. Use the new EFM system parts kit builder available at www.wilger.net.

your EFM system liquid kit on www.WILGER.NET

Build

G

Wilger Electronic Flow Monitoring System App

Product 2 & 3 Setup: [Optional if using multiple products]

Set Product 1 Outlet spacing
Prod 1 Alarm threshold
Jet selection
(Color of jet used in flowmeter)

Product 1 Setup:

GREEN JET

BLUE JET

RED JET

EFM System App Preview - Setup & Go

Download the Wilger Electronic Flow Monitoring System App.
 (GooglePlay Store, or APK download from www.wilger.net/efm.apk)

Electronic Flow Monitoring System Setup

ECU Setup Page

ECU WIFI Password

of nodes connected to system

Serial # on ECU case [IMPORTANT]

Single or Multi-Product/screen

Multi Product (Max 196 Runs)

Leave at default 120

Set to # seconds for page scroll

#0

US GAL/MIN

Serial number may have 7-9 digits]

Preferred Flow UNIT

Preferred Application Rate UNIT

Set Fixed Application Speed

Kph

Mph

16.00 Inch mm

Inch mm

10

Inch mm

12

- Power up ECU, connect tablet to ECU WIFI, and complete ECU setup, including specifying product-specific alarm, outlet spacing & jet selection.
- (WIFI password is ECU serial number; eg. "WILGER_EFI_1234567") ECU serial number may be between 7-9 digits.
- Set row/outlet locations (on screen) by pairing row # and physical location of sensor (which node/cables it is connected to). Customize page layout by preference (group balls by sections or any other layout by user preference).
- System will now monitor each individual flowmeter individually (on detailed snapshot screen and alarms), by product (with visual balls), and as a whole system.

Populate each row of info (corresponds to 1 ball, and up to 24 balls/section) for each sensor used in the system

Sensor Setup Page

E • 3

Sensor Setup Area:

(1-4) the sensor is connected 10 Sensor # (SNR) - 1/2/3/4 Select the cable number Change 6 1-10 tabs for Section Screens [Multi-Product/Screen View] 1-3 tabs for Product Screens [Single-Product/Screen View] Select the node harness letter the sensor is connected to. Divider Letter (DIV) - A/B/C/D: default 0 Product 1-3 Selection & Label Setup IN sensor is connected to. Set to N/A for blank slot. က Node Number (NODE): Select the node # the Electronic Flow Monitoring Sensor Setup Row Label: Name the sensor by outlet # or name (max 3 characters) 0 Product

Now that basic setup is complete, explore the individual row detailed screens, application widgets, advanced calibration screen, and equipment profile saving/recalling as well

Wilger makes spray tips for applicators who care about how they spray.

Wilger makes nozzle bodies & components that address and support best practices being developed in the crop protection industry.

Wilger makes flow monitoring & metering components that are critical to maintaining effective and consistent application.

CANADA
Wilger Industries Ltd.
Site 412, Box 280, RR#4
Capital Circle W & Auction Mart Rd.
Saskatoon, SK, Canada S7K 3J7
Phone: 1 (833) 242-4121
Fax: (306) 242-4122
Email: info@wilger.net

Email: info@wilger.net

UNITED STATES
Wilger Inc.
255 Seahorse Drive
Lexington, TN, USA
38351-6538
Phone: (877) 968-7695
Fax: (877) 968-7613
Email: WilgerEsc@WilgerEsc.com

ARGENTINA
Wilger Argentina
Mitre 699
San Nicolas (2900)
Buenos Aires, Argentina
Phone: +54 9 336 4596710
Email: cjporras@gmail.com

Focused on Application
Performance for
Over 45 Years

www.wflger.net

All Wilger trademarks and logos are owned by Wilger Industries Ltd. All other brand or product names are

of their respective owners. All rights reserved.