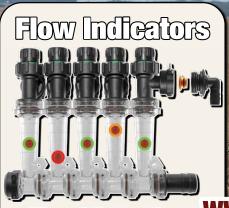
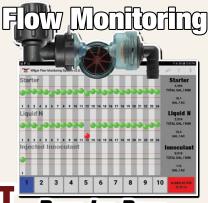


WILGER
SPRAYER &
LIQUID FERTILIZER
PARTS CATALOG


REVISED JULY 2024

WORLD CLASS SPRAYING COMPONENTS



Visual Detection of Plugged Lines

FOR MORE INFORMATION
VISIT

www.WILGER.NET

Row-by-Row Flowmeter

New & Featured Products 3-6
Dual-Spray 4+1 [DS41] Nozzle Bodies
Spraying Resources & Topics7-11
Combo-Jet Spray Nozzle Advantage & FAQ
Spray Nozzles, Metering & Adapters 12-32
ER Series Overview, 80° & 110°
Wet Boom Nozzle Bodles33-39 Table Dual-Spray 4+1 [DS41] Nozzle Bodies33
Combo-Jet Swivel Bodies (1-3 Outlets)

	Dry Boom Nozzle Bodies41-44
	Compact Nozzle Bodies & Swivel Turret Adapters
	Sprayer Plumbing 44-51
	Sprayer Boom Clamps
	Liquid Fertilizer Manifold Parts 52-54
お 一	0-ring Seal Check Valves
	Liquid Fertilizer Monitoring55-63
が対する。10世紀の世界の対象の対象の対象の対象の対象の対象の対象の対象の対象の対象の対象の対象の対象の	FLOW VIEW Visual Ball Flow Indicators

For Terms and Conditions, visit www.wilger.net

Wilger products are sold to original equipment manufacturers and authorized distributors, and are available to end users through retail dealerships.

Warranties - Wilger warrants that its products are free of defects in material and workmanship and perform to each product's specifications. The foregoing warranties are in lieu of all other warranties, written or expressed, including, but not limited to, those concerning suitability for a particular purpose. Claims under these warranties must be made promptly within one (1) year after receipt of goods by the buyer. Any warranty action by the buyer must be expressly pre-authorized by Wilger.

Technical Assistance - Wilger personnel are available to provide technical assistance in the choice or use of products furnished to the buyer and will do so free of charge. Wilger assumes no obligation or liability for any such advice, or any consequences occurring as a result of the application of such advice. The buyer is solely responsible for the selection of the appropriate product(s) and the appropriate application to the intended end use.

Limitation of Liabilities - Except for claims for bodily injury, Wilger's liability for any and all claims arising out of the purchase of the product shall not exceed the billed or billable value of the product. In no case will Wilger be liable for any consequential damages or loss of profit, even if Wilger has been advised of the possibility of such damages.

NEW & FEATURED PARTS [Page 1]

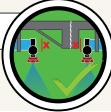
WILGER Dual Spray 4+1 [DS41] Nozzle Bodies

The ultra-compact 'DS41' nozzle body integrates a single by-pass nozzle body (optional for spot spray or Dual PWM) as well as a robust 4-nozzle turret.

This new generation of nozzle bodies is designed to fit compact boom frames, providing the benefit of stacked nozzle bodies in a much smaller and robust package with new product designs to

'Right' Version improve fit and function. 'Left' Version 41901-00 41900-00

Spring-Lock Turret Positive Turret Positioning



Ability to spray with one or both nozzles independent of eachother.

Super Compact Space Saving

Chemical & Acid Resistant

New Robust Design

> Compact for 10" spot spraying spacing

COMBO-RATE Boom End Flush Valves, QF100 Ultra Compact & Offset Elbows

A series of super compact fittings including the last spray nozzle body, full flush valve, and recirculation ports.

Super Compact **Boom Ends**

Recirculating boom port

2x Stackable COMBO-RATE nozzle body port

Full ID ORS Flush Valve

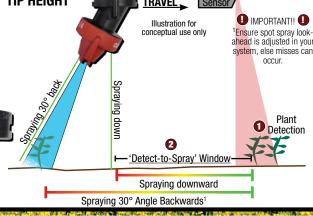
Ultra Compact nozzle body elbow

©@MI3O-J∃T₀ DX SPOT SPRAY NOZZLES & 30° Nozzle Adapter

Narrow-angle drift reduction nozzles for spot spraying

DX60-04 PWM APPROVED

Nozzle Angles


Available in 20° 40° 60°

Available in DX sizes -015 to -125

311 #40219-00 30° Adapter For Optical, Spot and Broadcast spraying on

For back or front, single nozzle spraying at 30°

Looking to spray faster with your spot spray system? Consider using the new 30° adapter to tolerate faster speeds TIP HEIGHT TRAVEL

Wilger Catalog - Updated July 2024

10" nozzle spacing

NEW & FEATURED PARTS [Page 2]

COMBO-JET® 30/50 Adapter

40442-00

COMBO-JET outlet to 30° & 50° front/back COMBO-JET outlets

-Quarter Turn-

Perfect for cereal-head fungicide & other applications benefiting from angled spray

Use it with the new DS41 nozzle body for angled spraying in tight sprayer boom frames

INSTA-JET insert for COMBO-JET®

40262-00

The Insta-Jet insert snaps into any COMBO-JET1 nozzle to increase responsivity to PWM nozzle start and stop

DX40-04

The Insta-Jet insert speeds up and extends the duration of optimal spray pattern by reducing the effective 'start' and 'stop' time required to produce a desired spray. This is especially important for spot spraying that has intermittent nozzle flow interruptions. 1Not compatible w/ UR series or with use of select nozzles/adapters

30° Angled Nozzle Adapters

Nozzle adapters give the ability to angle a nozzle forward or backward, depending on needs for crop-adapted spraying. Commonly outfitted on spot spraying systems to increase potential spray speed.

COMBO-RATE Manifolds

Replacing a yard sprayer manifold? Building your own yard or ATV sprayer?

For setups needing: Pres. Gauge Left/Right Wing(s) Spray Gun Pressure regulator valve Easily Expandable

NEW 3-Hole Fertilizer Streamer (FS3) Nozzles

Precision molded & color-coded liquid fertilizer streamer caps for consistent liquid fertilizer with less plant burn.

> Includes metering orifice and deflector plate in a single part number for easy ordering.

Improved performance at

20"

Use Tip Wizard for Fertilizer Streaming Nozzle Selection

Simply input your intended application rate(s), speed, nozzle spacing and you are well on your way to finding the best fertilizer streamer nozzle for your spray applications.

NEW & FEATURED PARTS [Page 3]

COMBO-RATE® Top Turrets & Double-Down

A top take-off turret changes the orientation of the module for larger PWM solenoids. The top-turret is available with new double-down spray outlets.

COMBO-RATE top-turrets are compatibility with all stacking COMBO-RATE parts.

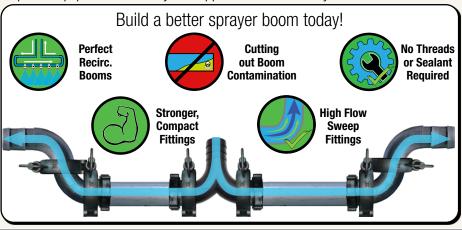
High Flow Nozzle Bodies (21/32")

Nozzle bodies for 21/32" high flow inlet holes available in COMBO-JET, COMBO-RATE and new

COMBO-RATE® Angled End Body for Fence-row spraying

41137-00

A new COMBO-RATE end body that provides a swivel joint that is available to be locked in 15° increments¹ for crop adapted spraying or fence-row nozzle spraying.


Perfectly paired with the new COMBO-RATE Boom End Flush Valve for a compact and protected fence-row

nozzle

¹Note on adjust-ability - Some sprayer manufacturers choose to have swivel end bodies permanently glued to position/angle. These swivel end bodies would NOT be adjustable, and removal of glue and re-adjustment would void warranty.

Quick Flange Sprayer Boom Fittings

The sprayer boom fittings for the next generation of sprayers, equipped to improve equipment efficiency and application consistency.

New O-Ring Seal Fittings, Assemblies & Kits

3/8" to 1'

hose sizes available

20576-00 50 mesh strainer

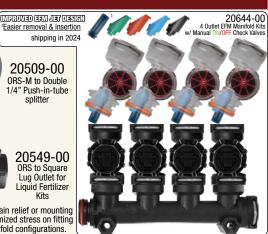
attaches to any ORS

fitting

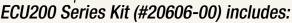
20576-02

50 Mesh strainer

cartridge



20549-00 ORS to Square Lug Outlet for iaŭid Fertilizer_


NOTE: Ensure proper strain relief or mounting is added to ensure minimized stress on fitting ioints in complex manifold configurations

NEW & FEATURED PARTS [Page 4]

Wilger Electronic Flow Monitoring System ECU200 Release

A new compact ECU that includes the first 16CH node for more compact systems

#20606-01 ECU ONLY

Back View: New position for ECU Serial Number

(9 digit serials now used)

Connects the battery harness to the ECU

#20606-02 Connects 'Node 1'

quad-sensor harnesses

A/B/C/D

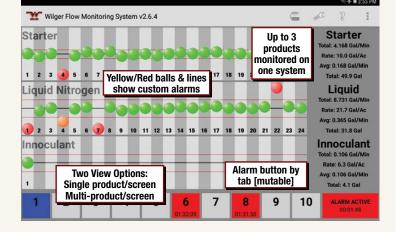
12v batterv harness #20603-02

> Antenna #20603-03

4x #20585-00

What about other EFM parts?

All parts beyond this kit are shared between ECU100 and


ECU200 parts.

Wilger Electronic Row-By-Row Flow Monitoring System

The serviceable flowmeter designed & built specifically for agricultural chemical & liquid applications

Fittings Swivel 360°

Modular Design for **Any Size Equipment**

Serviceable Flowmeter for Ag.

High Accuracy **Flowmeter**

Wilger Product Literature & Tools

Wilger provides free printed product literature, prices lists and tools. Request a copy today. All brochures are also available at www.wilger.net

Tip Wizard Updates

Tip Wizard has new features coming! Double-down spraying, spot spraying and more!

Tip Wizard aims to lead the industry as the best spray tip calculator for broadcast applications.

WHERE TO BUY WILGER PRODUCT To find a list of local dealers/retailers and distributors in your area, visit the WILGER.net 'WHERE TO BUY page, to easily enter your address to find local Wilger product.

The COMBO-JET. Spray Nozzle Advantage

MR110-06

Less plugging, as the path of flow always gets larger

40% longer strainer that snaps & seals into place

SR / MR / DR / UR 90% 75% 90%+ **Drift Reduction Series**

Cap color matched to flow rate

Super long-lasting stainless steel spray tip The most versatile spray tips for Pulse Width Modulation Systems (e.g. Capstan Pinpoint®/EVO®, Case AIM Command®, John Deere ExactApply®, IntelliSpray®, Raven Hawkeye®, & more)

Spray tip & cap are held together as one piece

Easy-to-read label

Best educational spray tip charts & tools provided to select the best spray tips

Combo-Jet tips use a modern pre-orifice & closed chamber design that produces significantly less drift, creates solid mass droplets, for maximum spray velocity and more meaningful spray.

Without needing consistent air induction for drift reduction,

Combo-Jet spray tips set the standard for Pulse Width Modulation (PWM) spraying system nozzles.

WILGER.NET has the most useful spray tip selection help in the world.

TIP WIZARD ONLINE

EXCEL-BASED CHARTS

COMBO-JET® ER/SR/MR/DR/UR Spray Tips - What is the difference?

The sliding scale of droplet size means at any flow rate, you can match your desired spray quality.

Comparison Criteria	ER Series Extended Range	SR Series Small Reduction	MR Series Mid-Range Reduction	DR Series Drift Reduction	UR Series Drift Reduction
Spray Tip Design	Conventional Flat Fan	Pre-orifice Drift Reduction	Pre-orifice Drift Reduction	Pre-orifice Drift Reduction	Dual Chamb
Spray Quality @40PSI	Medium	Coarse	Extremely Coarse	Extremely Coarse	Ultra-0
Droplet Size¹ @40PSI	Smallest (246µ VMD¹)	Medium (371μ VMD¹)	Large (474µ VMD¹)	Very Large (529µ VMD¹)	Ultra Coarse
% <141μ² % <600μ³	20% of volume < 141µ 94% of volume <600µ	8% of volume < 141µ 89% of volume <600µ	4% of volume < 141μ 74% of volume <600μ	2% of volume < 141μ 64% of volume <600μ	UR spray tips are sp designed for certain c that require exception
Drift Potential	Most likely to drift	Lower drift potential	Major reduction in drift	Very low drift potential	They are not be to be spray tip series that ar
Coverage	Best	Excellent	Very good	Good	on the chemical la up-to-date labe

¹Based on an XX110-06 nozzle @ 40 psi (2.75 BAR)

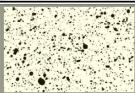
²Droplets smaller than 141µ are more likely to drift. 141µ is used as a standard for estimating driftable fines.

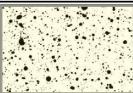
³Droplets smaller than 600μ provide better coverage. Droplets > 600μ consume more spray volume, reducing overall coverage

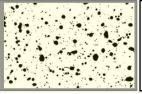
ber Drift Red.

Coarse

e (633µ VMD1)


specialty spray tips, chemical applications tional drift reduction.


be replaced with other are not approved to be the chemical label. Always follow up-to-date label information.


Refer to chemical application label for

More information available at www.w.

More on Page 30

Selecting the Correct Spray Quality & Droplet Size

Diffitus Effects

Generally speaking, smaller droplets deposit on the target more effectively than larger droplets, but larger droplets will drift less. So, when balancing drift control and efficacy, ensure to follow chemical labels and guidelines to designate the required spray quality and droplet size.

Where to find target spray quality or droplets izea

Depending on the chemical, as well as the different methods and modes of applications, some chemical labels may have less/more information. In general, chemical labels will have a description of how it should be applied, in the form of an ASABE spray classification recommendation, or a minimum spray classification (e.g. Spray at least ASABE Coarse). Some chemical label will also stipulate which nozzles can be used.

Application Information:

Minimum volume requirement on chemical label

Reference max pressure for conventional nozzles like ER series. Try avoid conventional (non-drift reduction) spray tips.

Water Volume: Minimum 22 L per acre.

Nozzles and Pressure: 30 to 40 psi (210 to 275 kPa) when using conventional flat fan nozzles.

Low drift nozzles may require higher pressures for proper performance. Use a combination of nozzles and pressure designed to deliver thorough, even coverage of **ASABE coarse spray**. Droplet spectrum recommendation for balance of drift & coverage.

±ampleSyayQualityChar3byTypeofApplication

ASABE S-572.1 Classification Category	Color Code	Estimated VMD Range for Spray Quality*	Systemic Insecticide & Fungicide	Contact Foliar Herbicide	Systemic Foliar Herbicide	Soil-Applied Herbicide	Incorporated Soil-Applied Herbicide	Fertilizer
Extremely Fine (XF)	Purple	Under 60						
Very Fine (VF)	Red	60-105						
Fine (F)	Orange	106-235						
Medium (M)	Yellow	236-340						
Coarse (C)	Blue	341-403						
Very Coarse (VC)	Green	404-502						
Extremely Coarse (XC)	White	503-665						
Ultra Coarse (UC)	Black	Over 665						

The above table provides general guidelines regarding droplet size and spray quality used in most spray applications.

It is always required that you carefully read and follow updated chemical manufacturers application label and instructions.

What about Multi-Tip Spraying? When to consider Double-Down & Angled Spraying

Potential problems with HIGH FLOW applications (15GPA+) with a single spray nozzle: Spraying high volume out of a single tip can produce droplets that are 'too large" to be effective for coverage, which make for less effective spray application.

Using multiple spray tips at the same time can provide substantial gains in effective coverage into crops or applications that otherwise would be very difficult to cover; however, multi-tip spraying should not be used without reason.

A typical time to use **Multi-Angle** spraying:

For improved coverage on a vertical growing target (e.g. wheat) when you are needing to paint both sides of the plant with fungicide. (e.g. Fusarium Head Blight)

A typical time to use **Double-Down** spraying:

For high rate applications that rely on consistent coverage in a dense canopy. Use nozzles to produce a meaningful mix of coarser and finer spray to hit different levels of the canopy.

Pairing already-owned nozzles to make a dual nozzle pair:

Much of the time, an operator already has 1-2 nozzles on the sprayer that could be stacked as a pair, so it is an effective way to use existing nozzles to improve spray application with very little cost.

^{*}NOTE: VMD range does not classify spray quality. Always ensure spray quality is followed first. VMD is a supplementary figure, and it is normal that nozzles with similar VMD can be classified into different spray qualities.

conventional nozzles like ER series.

B

A First-timer's look at Tip Wizard

Beginner's Guide to using Tip Wizard

- Choose application units, spray system type, and search function (e.g. Search for tips)
- **Enter** application rate, spraying speed¹, nozzle spacing, and spray tip angle². Since PWM systems can modulate flow by changing the spray duration, enter the MAX typical spraying speed ²Spray tip angle required is based on nozzle spacing and boom height. Always maintain 100% overlap.
- **Enter** target spray quality or target droplet size (microns).

<This is where Tip Wizard gets more useful>

Each chemical used in agricultural spraying has different spray quality requirements for best efficacy and also to maintain tolerable levels of driftable fines in ideal conditions. Using the droplet size (VMD) can allow a more advanced way to filter through series of tips. In the event a target spray quality is NOT possible, widening the spray quality to SEE ALL may be required. (e.g. targeting MEDIUM spray quality with nozzle sizes too large to produce M)

Where to find target spray quality or droplet size?

Depending on the chemical, as well as the different methods and modes of applications, some chemical labels may have less/more information. In general, chemical labels will have a description of how it should be applied, in the form of an ASABE spray classification recommendation, or a minimum spray classification (e.g. Spray at least ASABE Coarse)

Minimum water requirement on chemical label by law

Water Volume: Minimum 22 L per acre.
 Nazzles and Pressure: [30 to 40 psi (210 to 275 kPa) when using conventional flat fan nozzles. In yavoid non-drift reduction lips.
 Low drift nozzles may require higher pressures for proper performance. Use a combination of nozzles and pressure designed to deliver thorough. [even coverage of ASABE coarse spray.] Displet spectrum recommendation for balance of drift & coverage.

For the example chemical label application information, we'd have a classification of COARSE droplet size to follow. Considering the mode of application as well as the action (e.g. systemic herbicide vs. contact herbicide), you can choose the spray quality that would suit your conditions as best as possible. REMEMBER: the larger the droplet size/VMD, the coarser the spray, resulting in less coverage

For advanced users, using a VMD droplet size can further filter into a spray quality to make it easier to compare one series to another. For an example, we might find we typically have windier conditions, so try filter our results to stay around 375µ-400µ for our targeted droplet size.

Select the Best Spray Tip for your needs.

Based on the operating speed, pressure, spray quality, and while also gauging the last few columns (VMD, % drift, %

Picking Spray Tips for Auto-Rate Controlled Sprayers

1 STEP 1: Size Your Tip Since the application rate must be consistent, selecting a tip sized to the required rate over the actual sprayer speed range is critical. It is recommended to use Tip Wizard, as it will adjust the chart specifically for any application rate, not just common pairs of rate & speed.

Application Information:

FOCUS ON: SPEED & PRESSURE for a required APPLICATION RATE

Speed and pressure dictate a spray tip's ability to match a rate, and we must ensure our typical travel speed follows a reasonable pressure range. Meet your minimum speed (e.g. turning) within the operational pressure range. Having pressure too low in slow spots can lead to spotty coverage. Once you have referenced your chart to find your applied rate to your speed, you will find a certain nozzle size will be most effective.

*FOR PWM SPRAYERS (DUTY CYCLE): Since you have more control of your pressure, your sprayer will typically allow for a wider selection of tip size. Try to pick a size that allows a duty cycle of 60-80% at your typical sprayer speed, allowing sufficient speed up/down.

STEP 2: Filter to Your Spray Quality Each chemical will require a nozzle spray quality (for labels that do not, consult chemical representative or agronomist, or general guide based on mode of action), since you have selected your tip size (e.g. 110-04) you can now find the best option within the series available in that nozzle size. The ER/SR/MR/DR/UR series differ based on spray quality & drift reduction.

FOCUS ON: 'ASABE \$572' SPRAY CLASSIFICATION

Since the pressure is dictating the spray quality, you'll want to filter out any tip series that cannot apply the recommended spray quality.

*FOR PWM SPRAYERS (Pressure Selection): Your spray quality can be changed with changing of sprayer pressure. This means instead of maintaining the required quality through a fixed operating pressure range, you can maintain a more flexible pressure range (provided duty cycle is OK).

STEP 3: Double Check It is worthwhile to review extra information provided for the spray tip, and re-evaluate if necessary. While the extra information in extrapolated from lab conditions without active ingredients, and cannot be considered actual, but it does lend to paint a picture of differences between series.

[ADVANCED] FOCUS ON: Spray % <141μ, Spray % <600μ, VMD (μ)

The extra columns reinforce the different spray qualities between different series, but also give the ability to make a rough spray plan for managing real life spraving conditions.

Spray % <141µ: % of total spray that can be considered driftable fines. In ideal conditions, it would be reasonable to assume this spray is NOT going where you want it to go. Due to evaporation before absorption, off-target spray or inversion, very small droplets will not likely hit target. Ideally have a spray tip that minimizes driftable fines, BUT ensure you maintain an acceptable level of coverage.

As speed, wind conditions & boom height increase, observed spray drift will increase substantially.

Spray % <600µ: % of total spray that can be considered small droplets. As % of these useful droplets lowers, coverage is reduced.

Consider it the 'other half' of the spray application, focusing on small droplets for coverage. Whereas you should maintain a low %<141µ, try to keep a %<600μ as high as possible, to maintain better coverage. As a very rough guideline with some usually chemical applications, aim for ~80+% <600μ for systemic applications; or ~90+% <600µ for contact applications; provided drift reduction levels are met and are satisfactory.

VMD (µ): The volumetric median diameter is the middle-point of spray distribution, and can be used to estimate between different series of the same size spray tips (tested on the same laboratory equipment). It is not for comparing between brands of tips. If you are familiar with using a VMD in tip searches, you can use it as an intensive filter to further focus in on tips that might work for your application. For example, if you are happy with spray application with the MR110-04 at 50PSI (346µ VMD), the spray quality might be comparable to an SR110-06 at 50 PSI (337µ VMD). Bear in mind, VMD is used for educational purposes only, and should not dictate application.

For more Guides, Videos & Reading on proper nozzle selection, visit www.wilger.net

We aim to have all sorts of ways to help make the best educated decision in picking and using spray tips, so if there is something you find would be helpful, don't hesitate to reach out and ask. Often, we cannot provide EVERYTHING there is to know in our guides, as it can be overwhelming, so if you are wanting to get more information from an expert, contact WILGER.

Picking Spray Tips for Pulse Width Modulation (PWM) Sprayers

NOTE: PWM Spray systems differ in some respects (max flow capacity, pulse frequency (Hz), and other general variations in operation. This guide is a general guide that applies to most PWM spray systems, but for clarification would be based on a 10Hz solenoid, with a relative max flow capacity of 1.5 us gpm (this determines the relative pressure drop). Wilger does not own, produce, or have any ownership of PWM spray systems. All rights reserved by their owners.

O STEP 1: Size Your Tip Since the application rate must be consistent, selecting a tip sized to the required rate over the actual sprayer speed range is critical. It is recommended to use Tip Wizard, as it will adjust the chart specifically for any application rate.

Since PWM sprayers have control of sprayer pressure, a PWM sprayer will typically allow for a wider selection of tip sizes.

FOCUS ON: SPEED, PRESSURE & DUTY CYCLE (DC%) for a required APPLICATION RATE

Speed, pressure and respective duty cycle dictate a spray tip's ability to match a rate, and we must ensure our typical travel speed follows a reasonable pressure range. Having duty cycles <50% can degrade spray quality and consistency of spray swath, so it is always recommended to be above that. Try to pick a size that allows a duty cycle of 60-80% at your typical sprayer speed, allowing sufficient speed up/down. If a nozzle is approaching 90-100% at your maximum sprayer speed at your highest pressures, this can be a good indication that a nozzle is sufficiently sized.

Before you look at any coverage/spray quality characteristics of a nozzle, you should have solidified which nozzle SIZE will work best first.

🕗 STEP 2: Filter to Your Spray Quality Each chemical will require a nozzle spray quality (for labels that do not, consult chemical representative or agronomist, or general guide based on mode of action), since you have selected your tip size (e.g. 110-04) you can now find the best option within the series available in that nozzle size. The ER/SR/MR/DR/UR series differ based on spray quality & drift reduction.

FOCUS ON: 'ASABE S572' SPRAY CLASSIFICATION

Since the pressure is dictating the spray quality, you'll want to filter out any tip series that cannot apply the recommended spray quality. Since PWM gives full control of sprayer pressure, this will usually filter the results to 1-2 nozzles within a size or series.

STEP 3: Pick your most flexible spray nozzle It is worthwhile to review extra information provided for the spray tip, and re-evaluate if necessary. While the extra information in extrapolated from lab conditions without active ingredients, and cannot be considered actual, but it does lend to paint a picture of differences between series.

The goal is to select a nozzle that can be applied at relatively moderate pressures (e.g. 50-60PSI) when spray conditions are ideal, giving a means to reduce pressure to 30-40PSI to have a 'drift reduction mode' that can be called upon when less ideal conditions arrive.

[ADVANCED] FOCUS ON: Spray % <141μ, Spray % <600μ, VMD (μ)

The extra columns reinforce the different spray qualities between different series, but also give the ability to make a rough spray plan for managing real life spraying conditions.

Spray % <141µ: % of total spray that can be considered driftable fines. In ideal conditions, it would be reasonable to assume this spray is NOT going where you want it to go. Due to evaporation before absorption, off-target spray or inversion, very small droplets will not likely hit target. Ideally have a spray tip that minimizes driftable fines, BUT ensure you maintain an acceptable level of coverage.

As speed, wind conditions & boom height increase, observed spray drift will increase substantially. With wind speeds of 12mph+, it can be expect to have driftable fine spray double. Windy conditions, higher drift sensitivity, and other environmental reasons are serious considerations for what might be an acceptable level of driftable fines.

By general chemical mode of action, you might have a reference point for % driftable fines, which might be generalized as:

Systemic Herbicides: Try maintain driftable fines <10%. (For very sensitive applications and herbicides, the requirement might go down to even 1.5-5%) Contact Herbicides & Fungicides: Try maintain driftable fines <15%. This allows for a consistent and high level of coverage without losing a great deal to driftable fines. It is often part of a good balance between driftable fines and coverage.

Spray % <600µ: % of total spray that can be considered small droplets. As % of these useful droplets lowers, coverage is reduced. Consider it the 'other half' of the spray application, focusing on small droplets for coverage. Whereas you should maintain a low %<141µ, try to keep a %<600μ as high as possible, to maintain better coverage. As a very rough guideline with some usually chemical applications, aim for ~80+% <600μ for systemic applications; or ~90+% <600µ for contact applications; provided drift reduction levels are met and are satisfactory.

VMD (µ): The volumetric median diameter is the middle-point of spray distribution, and can be used to estimate between different series of the same size spray tips (tested on the same laboratory equipment). It is not for comparing between brands of tips. If you are familiar with using a VMD in tip searches, you can use it as an intensive filter to further focus in on tips that might work for your application. For example, if you are happy with spray application with the MR110-04 at 50PSI (346µ VMD), the spray quality might be comparable to an SR110-06 at 50 PSI (337µ VMD). Bear in mind, VMD is used for educational purposes only, and should not dictate application.

Quick-Start Example: 10 US GPA @ 14 MPH, on 20" spacing, with a PWM Spray System, applying SYSTEMIC HERBICIDE (glyphosate)

STEP 1: SIZE THE TIP: Focus on Pressure/Speed Range/Duty Cycle (Try maintain 60-80% duty cycle through full speed/pressure range)

For the best option for a tip size, it'd likely be the **110-06 size**. (110-05 falls short of nozzle size, and 110-08 starts getting too large)

It would apply 10 US GPA, 14MPH anywhere between 30-60 PSI, allowing more than enough room into turn situations if turn compensation is available.

STEP 2: QUALIFY THE SPRAY

Since the chemical label for glyphosate requires a 'even coverage of ASABE COARSE droplets', we will notice the ER110-06 is too fine, the SR fits just right, and the MR/DR are a fair bit coarser than required. We could also use a VMD of 400µ to filter out more.

Note: The MR & DR series are coarser than required, but might be suitable for applicators who have to apply into more drift-sensitive areas.

For this example, we will single out the SR110-06 as our best tip series.

STEP 3: DOUBLE CHECK SR110-06 for max flexibility between 'IDEAL SPRAYING MODE' & 'DRIFT REDUCTION MODE'

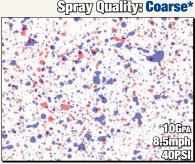
@50PSI: DUTY CYCLE: 75% V Excellent @35PSI: DUTY CYCLE: 90% V OK @50PSI: COARSE Spray Class **@50PSI % < 141μ: ~9%** ✓ Good

Ideal Condition Spraying @ 14MPH: Drift Sensitive Spraying @ 14MPH: @35PSI: VERY COARSE Spray Class @35PSI % < 141µ: ~6% ✓ Excellent

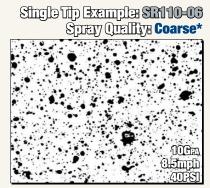
Further considerations: Given the high level of coverage at higher pressures (50PSI+), this same nozzle could be used for contact herbicides and fungicides to cover more applications.

Part No:	et® SR110-06 40287-06 Color: o: Not Required	: Grey				☆
Pressure (psi) 🖓	Speed Range (mph) ♀	DC (%) @ 14 mph	Class	VMD (μ) [©]	<141 (%) 😯	<600 (%)
25	3.3-13.2	>100	ХC	466μ	3	76
30	3.6-14.4	97	VC	438µ	5	81
35	3.9-15.6	90	VC	414μ	6	84
40	4.2-16.6	84	С	393µ	7	87
45	4.4-17.6	80	С	375µ	8	88
50	4.7-18.6	75	С	358µ	9	90
55	4.9-19.5	72	С	344μ	10	91
60	5.1-20.4	69	С	33 0 µ	11	92

Picking Nozzles for Double Nozzle Spraying


Picking two spray tips isn't much different than a single tip. Since the sprayer has some means of adjust the flow to match a flow rate, simply pick a nozzle size that would supply the full rate, and then split it into parts that would provide the same flow rate. E.g. If a 110-10 nozzle size is required for an application, suitable pairs would be like a '110-06 + 110-05' or '110-05', as the cumulative size would apply the same rate as a single 110-10. Limit the size difference to two nozzle sizes to ensure consistent back pressure between both nozzles. (e.g. 110-08 +110-02 would not be ideal as the -08 might steal flow from the -02). ALWAYS enter the cumulative size of nozzles into the controller. Not just one of the nozzles. (e.g. if a 110-04 + 110-06 were used, a -10 size nozzle would be entered)

1 STEP 1: Size Your Tip Since the application rate must be consistent, selecting a tip sized to the required rate over the actual sprayer speed range is critical. It is recommended to use Tip Wizard, as it will adjust the chart specifically for any application rate, not just common pairs of rate & speed.


FOCUS ON: SPEED & PRESSURE for a required APPLICATION RATE

- *FOR PWM SPRAYERS (DUTY CYCLE): Since you have more control of your pressure, your sprayer will typically allow for a wider selection of tip size.

 Try to pick a size that allows a duty cycle of 60-80% at your typical sprayer speed, allowing sufficient speed up/down.
- STEP 2: Filter to Your Spray Quality Each chemical will require a nozzle spray quality (for labels that do not, consult chemical representative or agronomist, or general guide based on mode of action), since you have selected your tip size (e.g. 110-04) you can now find the best option within the series available in that nozzle size. The ER/SR/MR/DR/UR series differ based on spray quality & drift reduction.

Example 2x SR110-03 Spry Quality Coarse*

*IMPORTANT: FOR PWM SPRAYERS (Pressure-drop through solenoid): Depending on the solenoid used, for larger nozzle sizes (or paired nozzle sizes) there will be greater pressure drop. So, when considering spray quality for the smaller nozzles in a pair, verify the pressure drop for the cumulative size as it will differ from the nozzles individually. With the pressure drop factor, cross-reference the spray quality of the smaller nozzles in the pair for their more realistic spray quality (after pressure drop). ALWAYS enter the joint nozzle size in the controller.

STEP 3: Double Check Just like the 'Quick-start guide to picking spray tips', refer to the extra information to qualify nozzles to ensure they will suit your application. Since the pair of nozzles are spraying a fraction of the total weight, there is some synergy between having one as a finer nozzle and the other coarser to produce a more meaningful mix of spray droplet sizes to get where they need to go.

[ADVANCED] FOCUS ON: Spray % <141µ, Spray % <600µ, VMD (µ)

The extra columns reinforce the different spray qualities between different series, but also give the ability to make a rough spray plan for managing real life spraying conditions.

Spray % <141µ: % of total spray that can be considered driftable fines. If one nozzle is producing more driftable fines than the other, but when averaging based on the flow, you'd want to ensure you are still at a tolerable driftable fines % given the application.

As speed, wind conditions & boom height increase, observed spray drift will increase substantially. This is especially the case with forward/backward facing

Spray % <600µ: % of total spray that can be considered small droplets. As % of these useful droplets lowers, coverage is reduced.

Since you are splitting a single 'large' nozzle into two smaller nozzles, you should take advantage of getting a much higher %<600µ than possible with a single nozzle.

VMD (µ): As VMD is the middle point in the distribution of spray, and a pair of nozzles will have a blended VMD when both are considered, simply qualify a tip based on acceptable spray quality first, and take note of the two nozzles and

EXAMPLE: 20 US GPA Glufosinate (Contact Herbicide), on 20" spacing, traveling 12 mph, using a PWM spray system

STEP 1: Using Tip Wizard (or nozzle charts), a 110-125 nozzle size would suffice for travel speed and pressure range. The ER110-125 is shown as an example. With this 110-125 nozzle size, we know a nozzle pair adding to a \sim 110-125 would be suitable for the application rate. (e.g 110-06 + 110-06) With this, split the nozzle size into portions and search for a '10 GPA' nozzle and '10GPA' nozzle for example, based on a fraction of total flow.

NOTE: There is extra pressure drop through a solenoid, so keep that in mind when selecting nozzles as the spray quality will differ from nozzles operating by themselves

STEP 2: By chemical label, Glufosinate is to be applied as a ASABE medium spray quality or coarser. Qualify spray nozzles suitable for chemical label requirement. Remember, if you cannot find a spray quality in the chart or in tip wizard, you will have to widen your spray quality search or split to a double down configuration that can provide closer to the ideal spray quality.

Example Result:
Double-Down SR110-06 would provide
upwards of 10%+ more volume made
of small droplets, without increasing
driftable fines.

The spray quality is within the 'coarse' spray quality, just outside MEDIUM spray quality. An ER series could be substituted to provide a mix of even finer spray into the dual nozzle setup.

Total flow would be the same as a 110-12, which would be nominally smaller ad than a 110-125.

STEP 3: Qualify nozzle pair based on spray quality, and pick based on most suitable % driftable fines (ideally <15%) and % coverage (ideally >90%)

COMBO-JET ER80° & ER110° Series Spray Tips

The ER series spray tip is a conventional flat fan nozzle, emphasizing consistent spray pattern with relatively fine spray. All ER nozzles are manufactured with a stainless steel tip.

Longer Lasting Stainless Tips

Less **Plugged Nozzles**

Perfect for PWM Sprayers

Consistent Pattern at Lower PSI

Acid Resistant **Nozzles**

consistent pattern.

COMBO-JET® ER80° ASABE S572.1 Spray Quality Chart

Pressure (PSI)	20	25	30	35	40	45	50	60	65	70	80
ER80-01	F	F	F	F	F	F	F	F	F	F	F
ER80-015	F	F	F	F	F	F	F	F	F	F	F
ER80-02	F	F	F	F	F	F	F	F	F	F	F
ER80-025	M	M	F	F	F	F	F	F	F	F	F
ER80-03	M	M	F	F	F	F	F	F	F	F	F
ER80-04	M	M	M	M	M	F	F	F	F	F	F
ER80-05	C	C	M	M	M	M	M	M	M	F	F
ER80-06	C	C	C	C	C	C	M	M	M	M	M
ER80-08	VC	C	C	M	M	M	M	F	F	F	F
ER80-10	XC	XC	XC	VC	C	C	C	M	M	M	F
ER80-125		XC	XC	VC	VC	C	C	C	C	C	M
ER80-15		XC	XC	XC	VC	C	С	C	M	M	M
ER80-20		UC	XC	XC	XC	XC	VC	C	C	C	C
ER80-25		UC	XC	XC	XC	VC	VC	C	C	C	C
ER80-30		UC	UC	XC	XC	XC	XC	XC	XC	VC	VC
ER80-40				XC	VC						
ER80-50				XC	VC						
ER80-60				XC	VC						

COMBO-JET® ER110° ASABE S572.1 Spray Quality Chart

COMPO OLI LITTO ACADE COTETT OPTAY Quanty chart												
	Pressure (PSI)	20	25	30	35	40	45	50	60	65	70	80
	ER110-01	F	F	F	Щ	Щ	F	F	Щ	Щ	F	F
	ER110-015	LL.	F	F	Щ	Щ	F	F	Щ	LL.	F	F
	ER110-02	F	F	F	Щ	Щ	F	F	Щ	LL.	F	F
	ER110-025	F	F	F	Щ	Щ	F	F	Щ	LL.	F	F
	ER110-03	F	F	F	Щ	Щ	F	F	Щ	LL.	F	F
	ER110-04	M	M	M	M	Щ	F	F	Щ	LL.	F	F
	ER110-05	M	M	M	M	Щ	F	F	Щ	LL.	F	F
	ER110-06	C	М	M	М	М	M	M	M	M	F	F
	ER110-08	C	С	C	М	М	M	M	F	F	F	F
	ER110-10	VC	C	C	С	С	C	M	M	M	M	F
	ER110-125		XC	XC	XC	VC	VC	C	С	С	C	C
	ER110-15		XC	XC	XC	VC	VC	C	C	C	C	C
	ER110-20		XC	VC	VC	C						
	ER110-25		XC	VC	VC	C						
	ER110-30		UC	XC	XC	VC						

COMBO-JET® ER Series Specifications

Approved for PWM Spray Systems
Compatible with all PWM Spray systems/Hz.

Operating Pressure 20-100PSI

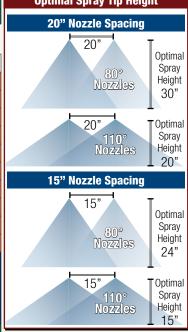
Flat Fan Nozzle Type Conventional Flat Fan

Nozzle Materials

Spray Tip: Stainless Steel O-ring: FKM, 13mm x 3mm #40260-00 (viton avail.) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)


Spray quality is categorized based on Dv0.1 and VMD droplet sizes. Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Chart shown includes spray quality at lested data points as well as extraondated data points. extrapolated data points.

Fine (F) Medium (M) Coarse (C)

Very Coarse (VC) Extremely Coarse (XC)
Ultra Coarse (UC)

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malverr

Optimal Spray Tip Height

COMBO-JET SR80° & SR110° Series Spray Tips

The SR series spray tip is a closed-chamber, pre-orifice drift reduction nozzle, emphasizing a first stage of drift reduction. The SR series balances excellent coverage spray with significant drift reduction upwards of 50%+.

A DETAILED LOOK AT: **SR110-06**

Longer Lasting Stainless Tips

Perfect

for PWM

Sprayers

Solid Mass

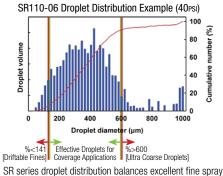
Spray

Droplets

Less **Plugged Nozzles**

Acid

Resistant


Nozzles

Droplet

Balance of Drift Control & Coverage

FINE DRIFT COVERAGE REDUCTION

coverage while reducing driftable fines.

COMBO-JET® SR80° ASABE S572.1 Spray Quality Chart

Shou ASADE SSTELL Spray Quality Unait									
25	30	35	40	45	50	60	65	70	80
M	M	Щ	ш	F	ш	ш	F	F	F
C	M	M	M	M	H	ш	F	F	F
C	M	M	M	M	M	H-	F	F	F
C	C	C	M	M	M	M	M	M	F
C	C	C	C	C	C	M	M	M	M
C	C	С	C	C	C	С	M	M	M
VC	VC	С	C	C	C	С	С	C	C
XC	VC	VC	VC	C	C	С	С	C	C
UC	UC	UC	UC	XC	XC	XC	XC	XC	XC
UC	UC	UC	UC	UC	UC	XC	XC	XC	XC
UC	UC	UC	UC	UC	UC	UC	XC	XC	XC
UC	UC	UC	UC	UC	UC	UC	UC	UC	UC
	UC	UC	UC	UC	UC	UC	UC	UC	UC
	UC	UC	UC	UC	UC	UC	UC	UC	UC
	UC	UC	UC	UC	UC	UC	UC	UC	UC
	25 M C C C C C VC XC UC UC	25 30 M M C M C M C C C C C C C C C VC VC VC UC	25 30 35 M M F C M M C M M C C C C C C C C C C C C C C C C UC	25	25 30 35 40 45 M M F F F C M M M M M C M M M M M C C C C C C C C C C C	25	25	25 30 35 40 45 50 60 65 M M F F F F F F F C M M M M F F F F C C C C C C M W	25

COMBO-JET® SR Series Specifications

Approved for PWM Spray Systems Compatible with all PWM Spray systems/Hz.

Operating Pressure 25-100PSI

Flat Fan Nozzle Type Closed-Chamber, Pre-Orifice Drift Reduction

Nozzle Materials Spray Tip: Stainless Stee O-ring: FKM, 13mm x 3mm #40260-00 (viton avail.) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)

Spray quality is categorized based on Dv0.1 and VMD droplet sizes. Objective 3rd party testing data, from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Chart shown includes spray quality at tested data points as well as extrapolated data points.

Fine (F) Medium (M) Coarse (C)

Very Coarse (VC) Extremely Coarse (XC)
Ultra Coarse (UC)

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malvern.

COMBO-JET® SR110° ASABE S572.1 Spray Quality Chart

									_	
Pressure (PSI)	25	30	35	40	45	50	60	65	70	80
SR110-015	M	F	F	F	F	F	F	F	F	F
SR110-02	M	M	F	F	F	F	F	F	F	F
SR110-025	M	M	M	M	M	F	F	F	F	F
SR110-03	С	C	C	C	M	M	M	M	M	F
SR110-04	С	C	C	C	C	M	M	M	M	M
SR110-05	С	C	C	С	C	C	C	M	M	M
SR110-06	VC	VC	C	C	C	C	C	C	C	M
SR110-08	UC	XC	XC	XC	XC	VC	C	C	C	C
SR110-10	UC	XC	XC	XC	XC	XC	VC	C	C	C
SR110-125	UC	UC	XC	XC	XC	XC	XC	VC	C	C
SR110-15	UC	UC	UC	UC	XC	XC	XC	XC	XC	XC
SR110-20		UC	UC	XC						
SR110-25		UC	UC	XC						

Optimal Spray Tip Height 30' 20" Tip

LERAP Ratings for SR Series As of January 2021

☆☆☆75% ☆☆50% 1.0-1.5BAR

For the updated list of nozzles, visit www.wilger.net/LERAP More information on LERAP certification, process, and the most up to date listing of approved nozzles and their ratings, is available from the Health and Safety Executive (HSE), also available online @

https://secure.pesticides.gov.uk/SprayEquipment

COMBO-JET® SR Pre-orifices - by nozzle size [Replacement Only for SR series]

ľ	SR Size	-01	-015	-02	-025	-03	-04	-05	-06	-08	-10	-125	-15	-20	-25	-30
	SR80°	40285-015	40285-02	40285-025	40285-03	40285-03	40285-06	40285-06	40285-08	40285-10	40285-125	40285-20	40285-20	40285-25	40285-40	40285-40
	SR110°	-	40285-02	40285-025	40285-04	40285-04	40285-06	40285-06	40285-08S	40285-08S	40285-10S	40285-13S	40285-20	40285-25	40285-40	-

COMBO-JET MR80° & MR110° Series Spray Tips

The MR series spray tip is a closed-chamber, pre-orifice drift reduction nozzle, emphasizing a second stage of drift reduction. The MR series balances great coverage spray with significant drift reduction upwards of 75%+.

Longer Lasting Stainless Tips

Superior Drift

Reduction

Balance of Drift Control & Coverage

FINE DRIFT COVERAGE REDUCTION

MR110-06 Droplet Distribution Example (40PSI) Effective Droplets for %>600 [Driftable Fines] Coverage Applications [Ultra Coarse Droplets]

MR series is designed to produce relatively coarse spray with minimal drift.

Perfect for PWM **Sprayers**

Solid Mass Spray **Droplets**

Acid Resistant **Nozzles**

COMBO-JET® MR80° ASABE S572.1 Spray Quality Chart

Pressure (PSI)	30	35	40	45	50	60	65	70	80
MR80-005	M	M	F	F	F	F	F	F	F
MR80-0067	F	F	F	F	F	F	F	F	F
MR80-01	M	I.	ш	II.	F	F	F	Æ	Щ
MR80-015	С	С	С	M	M	M	M	M	щ
MR80-02	C	С	С	С	C	M	M	M	M
MR80-025	VC	VC	С	С	C	С	С	С	С
MR80-03	VC	VC	С	С	C	С	С	С	С
MR80-04	VC	VC	C	C	C	C	C	C	С
MR80-05	XC	XC	VC	VC	VC	VC	C	C	С
MR80-06	XC	XC	XC	XC	VC	VC	VC	VC	C
MR80-08	UC	UC	UC	UC	XC	XC	XC	XC	VC
MR80-10	UC	UC	UC	UC	UC	XC	XC	XC	XC
MR80-125	UC	UC	UC	UC	UC	UC	UC	XC	XC
MR80-15	UC	UC	UC	XC	XC	XC	XC	XC	VC
MR80-20		UC	UC	UC	UC	XC	XC	XC	XC
MR80-25		UC	UC	UC	UC	UC	UC	UC	UC
MR80-30		UC	UC	UC	UC	UC	UC	UC	UC
MR80-40		UC	UC	UC	UC	XC	XC	XC	XC

COMBO-JET® MR110° ASABE S572.1 Spray Quality Chart

Pressure (PSI)	30	35	40	45	50	60	65	70	80
MR110-015	C	C	C	M	M	M	F	F	F
MR110-02	C	С	С	M	M	M	M	M	F
MR110-025	C	C	C	C	C	C	М	M	M
MR110-03	VC	C	C	C	C	C	C	C	C
MR110-04	VC	VC	C	C	C	C	C	C	C
MR110-05	XC	XC	VC	VC	VC	C	С	C	С
MR110-06	XC	XC	XC	VC	VC	VC	VC	VC	C
MR110-08	UC	UC	UC	XC	XC	XC	XC	XC	VC
MR110-10	UC	UC	XC	XC	XC	XC	XC	XC	VC
MR110-125	UC								
MR110-15	UC								
MR110-20		UC	XC						

COMBO-JET® MR Pre-orifices - by size [Replacement Only]

UUIII	O UL			,,,,,,	, o by	JIEU	Litchi	иоопп	,,,,								
-005	-0067	-01	-015	-02	-025	-03	-04	-05	-06	-08	-10	-125	-15	-20	-25	-30	-40
40285-005	40285-007	40285-01	40285-015	40285-02	40285-025	40285-03	40285-04	40285-05	40285-06	40285-08	40285-10	40285-125	40285-15	40285-20	40285-25	40285-30	40285-40

COMBO-JET® MR Series Specifications

Approved for PWM Spray Systems Compatible with all PWM Spray systems/Hz.

Operating Pressure 30-100PSI

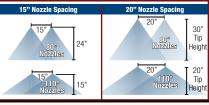
Flat Fan Nozzle Type Closed-Chamber, Pre-Orifice Drift Reduction

Nozzle Materials Spray Tip: Stainless Steel Repl. O-ring: FKM, 13mm x 3mm #40260-00 (viton avail) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)

Spray quality is categorized based on Dv0.1 and VMD droplet sizes.


Objective 3rd party testing data, from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Chart shown includes spray quality at tested data points as well as extrapolated data points.

Fine (F) Medium (M) Coarse (C)

■ Very Coarse (VC)
□ Extremely Coarse (XC)
■ Ultra Coarse (UC)

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malvern.

Optimal Spray Tip Height

	LERAP Ratings for MR Series As of January 2021							
MR110-04	★★★ 75% ★★ 50% 1.0-2.5bar 2.6-3.5bar							
MR110-05	☆☆☆90% ☆☆☆75% 1.0-1.5bar 1.6-5.0bar							
MR110-06	☆☆☆☆90% ☆☆☆75% 1.0-1.5bar 1.6-5.0bar							

For the updated list of nozzles, visit www.wilger.net/LERAP

More information on LERAP certification, process, and the most up to date listing of approved nozzles and their ratings, is available from the Health and Safety Executive (HSE), also available online @

https://secure.pesticides.gov.uk/SprayEquipment

JKI Nozzle Ratings for MRs

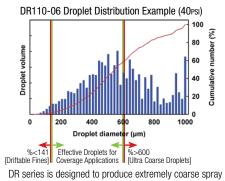
COMBO-JET DR80° & DR110° Series Spray Tips

The DR series spray tip is a closed-chamber, pre-orifice drift reduction nozzle, emphasizing a third stage of drift reduction. The DR series balances good coverage spray with extremely low driftable fines, upwards of a 90% reduction in driftable fines.

Longer Lasting Stainless Tips

Superior Drift Reduction

Consistent Pattern at Lower PSI



Spray **Droplets**

Acid Resistant **Nozzles**

with very minimal drift.

COMBO-JET® DR80° ASABE S572.1 Spray Quality Chart

OUNDO-JET	טווט	U AU	ADE 3	01 L.	ı opı	ay Qu	unity v	viiai t	
Pressure (PSI)	30	35	40	45	50	60	65	70	80
DR80-005	С	М	M	F	F	F	F	F	F
DR80-0067	C	C	M	M	M	M	F	F	F
DR80-01	С	С	С	M	M	M	M	F	F
DR80-015	VC	VC	С	C	C	C	C	C	C
DR80-02	XC	VC	VC	VC	VC	C	C	C	C
DR80-025	XC	VC	VC	VC	VC	C	C	C	C
DR80-03	XC	XC	VC	VC	VC	C	C	C	C
DR80-04	XC	XC	XC	XC	XC	XC	VC	VC	C
DR80-05	XC	XC	XC	XC	XC	XC	XC	VC	VC
DR80-06	XC	XC	XC	XC	XC	XC	XC	XC	XC
DR80-08	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-10	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-125	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-15	UC	UC	UC	UC	UC	UC	UC	UC	UC
DR80-20		UC	UC	UC	UC	UC	UC	UC	UC
DR80-25		UC	UC	UC	UC	UC	UC	UC	UC
DR80-30		UC	UC	UC	UC	UC	UC	UC	XC

COMBO-JET® DR110° ASABE S572.1 Spray Quality Chart

Pressure (PSI)	30	35	40	45	50	60	65	70	80
DR110-015	C	C	C	C	C	C	C	M	M
DR110-02	VC	VC	VC	C	C	C	C	C	C
DR110-025	VC	VC	VC	C	C	C	C	C	C
DR110-03	XC	XC	VC	VC	VC	C	C	C	C
DR110-04	XC	XC	VC	VC	VC	VC	C	C	C
DR110-05	XC	VC	VC						
DR110-06	XC	VC							
DR110-08	UC	XC							
DR110-10	UC								
DR110-125	UC								
DR110-15	UC								

COMBO-JET® DR Pre-orifices - by tip size [Replacement Only]

-005	-0067	-01	-015	-02	-025	-03	-04	-05	-06	-08	-10	-125	-15	-20	-25	-30
40285-005	40285-007	40285-01	40285-015	40285-02	40285-025	40285-03	40285-04	40285-05	40285-06	40285-08	40285-10	40285-125	40285-15	40285-20	40285-25	40285-30

COMBO-JET® DR Series Specifications

Approved for PWM Spray Systems Compatible with all PWM Spray systems/Hz.

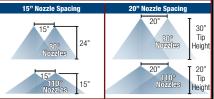
> Operating Pressure 30-100PSI

Flat Fan Nozzle Type Closed-Chamber, Pre-Orifice Drift Reduction

Spray Tip: Stainless Steel Repl. O-ring: FKM, 13mm x 3mm #40260-00 (viton avail) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)


Spray quality is categorized based on Dv0.1 and VMD droplet sizes.
Objective 3rd party testing data, from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Chart shown includes spray quality at tested data points as well as extrapolated data points.

> Fine (F) Medium (M) Coarse (C)

Very Coarse (VC) Extremely Coarse (XC)
Ultra Coarse (UC)

Tips sized up to 110-06 verified on Phase Doppler Particle Analyzer (PDPA); tips sized over 110-06 verified on Malvern.

Optimal Spray Tip Height

LERAP Ratings for DR Series As of January 2021
☆☆☆75% ☆☆50% 1.0-2.5bar 2.6-3.5bar
☆☆☆ 90% ☆☆☆ 75% ☆☆ 50% 1.0-1.5bar 1.6-2.5bar 2.6-3.5bar
☆☆☆ 75% 1.0-5.0bar
፟፫⁄፫⁄፫፫ 90% ፫ ፫፫ 75% 1.0-1.5 _{BAR} 1.6-5.0 _{BAR}
↑↑↑↑ 90% ↑↑↑ 75% 1.0-3.0BAR 3.1-5.0BAR

More information on LERAP certification, and the most up to date listing of tested nozzles, visit https://secure.pesticides.gov.uk/SprayEquipment

JKI Nozzle Ratings for DR Series	
Visit www.wilger.net for updated charts	

	-10	-125	-15	-20	-25	-30
3		40285-125	40285-15	40285-20	40285-25	40285-30

COMBO-JET UR110° Series* Spray Tips

*U.S. Patent No. 10,603,681

The UR series spray tip is a dual-chamber, pre-orifice drift reduction nozzle, emphasizing the coarsest stage of drift reduction. The UR series is heavily suited to ultra-low driftable fines, emphasizing drift reduction over coverage.

Approved for Dicamba Mixes

Perfect

for PWM

Sprayers

Solid Mass

Spray

Droplets

Spray Drift

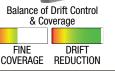
Longer

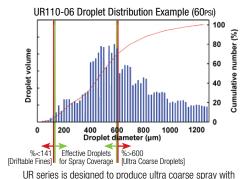
Lasting

Stainless

Tips

Acid


Resistant


Nozzles

Ultra Low

FINE

UR series is designed to produce ultra coarse spray with extremely little drift.

COMBO-JET® UR110° ASABE S572.1 Spray Quality Chart

Pressure (PSI)	35	40	45	50	60	65	70	80
UR110-025	UC	UC	UC	UC	XC	XC	XC	XC
UR110-03	UC	UC	UC	UC	XC	XC	XC	XC
UR110-04	UC							
UR110-05	UC							
UR110-06	UC							
UR110-08	UC							
UR110-10	UC							

COMBO-JET® UR Series* Pre-orifice Sets [Replacement only]

UR two-piece pre-orifices must be replaced with a new pair only. Correct orifices must be used for proper performance.								
-025	-03	-04	-05	-06	-08	-10		
40292-22	40292-23	40292-24	40292-25	40292-26	40292-28	40292-30		

	JKI Ratings for UR Series As of January 2021								
UR110-04		75% 2.0-3.0bar Ref. G-2184	50% 4.0-6.0bar Ref. G-2184						
UR110-05	90% 2.0bar Ref. G-2185	75% 3.0-6.0bar Ref. G-2185							
UR110-06	90% 2.0-3.0bar Ref. G-2189	75% 4.0-6.0bar Ref. G-2189							

Optimal Spray Tip Height								
15" Nozzle Spacing	20" Nozzle Spacing							
15" 24" Nozziles	20" 30° Norzzies							
15" 110° Nozzles 15"	20" 110° Nozzles 20"							

COMBO-JET® UR Series Specifications

Approved for PWM Spray Systems
Compatible with all PWM Spray systems/Hz.

Operating Pressure 35-100PSI

Flat Fan Nozzle Type Dual Closed-Chamber, Pre-Orifice Drift Reduction

Nozzle Materials

Spray Tip: Stainless Steel Repl. O-ring: FKM, 13mm x 3mm #40260-00 (viton avail) Cap: Glass-reinforced Polypropylene

ASABE Spray Classification

(ASABE S572.1 Standard)
Spray quality is categorized based on Dv0.1 and VMD droplet sizes.
Objective 3rd party testing data, from spray spectrum recording
equipment (without wind tunnel use), has been used to classify spray
quality for this chart. Chart shown includes spray quality at tested data points as well as extrapolated data points

Fine (F) Medium (M) Coarse (C)

Very Coarse (VC) Extremely Coarse (XC) Ultra Coarse (UC)

UR Nozzles verified on Malvern.

COMBO-JET® Snap-in Strainers - What size(s) and when?

Wilger manufactures snap-in strainers that can be used to protect a spray nozzle and keep it spraying instead of getting plugged by residues or debris. They snap in to any COMBO-JET cap^{UR} or metering orifice so the cap handles as one piece.

Nozzle Size	100 Mesh	50 Mesh	16/25 I	Mesh
-01 or smaller	Χ			
-015	Χ			
-02	X	X		
-025		Χ		
-03		Χ		
-04		Χ		
-05		Χ	Х	
-06		Χ	Х	
-08 or larger	Nozzle st generally n		Х	

^{UR}Strainers not compatible with UR series due to stacked pre-orifice

Stainless Steel Strainers

40251-00

Slotted Strainers

40249-00

Mesh Size	Slotted Strainer	Stainless Mesh	Color
100 mesh	-	#40251-00	Green
50 mesh	40249-00	#40250-00	Blue
25 mesh	40248-00	-	Yellow
16 mesh	40247-00	-	Gray

COMBO-JET 80° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

Nozzle Size &	Flow Rate	PSI	,			ate in U Nozzle			е			Classi Serie		; VMI		olet Siz	e in μ); s	%<1		rift %); ° Serie)0μ (S		roplets ° Serie	
Angle	USGPM			@ Sp	rayer S	Speed -	Miles	Hour		Class	VMD	<141	<600		VMD	<141	<600		VMD	<141	<600		VMD	<141	<6
	Flow	Boom				d (on 2											8-005								
	us gpm 0.035	<u>psi</u> 20	2gpa 5.3	3gpa 3.5	4gpa 2.6	5gpa 2.1	6gpa 1.8	7gpa 1.5	8gpa 1.3	Class F	VMD 167			Class	VIVID	<141	<600	Class	VIVID	<141	<000	Class	VIVID	< 141	<0
	0.040	25	5.9	3.9	2.9	2.3	2.0	1.7	1.5	F	157		100%					М	261	11%	99%	С	311	6%	10
80	0.043	30	6.4	4.3	3.2	2.6	2.1	1.8	1.6	F	149		100%					М	236	17%	98%		276	11%	10
005	0.047	35	6.9	4.6	3.5	2.8	2.3	2.0	1.7	F	142		100%					M	217	22%	97%		250	16%	10
ozzles	0.050	40 45	7.4	5.0	3.7	3.0	2.5	2.1	1.9 2.0	F	137 132	55%	100% 100%					F	201 189	26% 30%	96% 95%	M F	230 213	19% 23%	10
	0.056	50	8.3	5.5	4.2	3.3	2.8	2.4	2.1	F	128	63%	100%					F	178	33%	94%	F	200	25%	10
	0.061	60	9.1	6.1	4.5	3.6	3.0	2.6	2.3	F	121		100%					F	161	39%	93%	F	178	30%	10
	0.064	65	9.5	6.3	4.7	3.8	3.2	2.7	2.4	F	118		100%					F	154	41%	92%	F	169	33%	10
	0.066 0.071	70 80	9.8	6.5 7.0	4.9 5.3	3.9 4.2	3.3	3.0	2.5	VF	116 111		100% 100%					F	148 138	44% 48%	91% 90%	F	161 148	35% 38%	10
	Flow	Boom				d (on 2					0-0067		0-0067	SR80)-0067	#4028	8-0067		0-0067		0-0067	DR80	-0067	#4028	
	us gpm	psi	2 _{GPA}	3 _{GPA}	4 _{GPA}	5 _{GPA}	6gpa	7 _{GPA}	8 _{GPA}	Class	VMD		<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<
	0.047	20	7.0	4.7	3.5	2.8	2.3	2.0	1.8	F	199		100%					N 4	001	100/	000/		007	COV	10
80	0.053	25 30	7.9 8.6	5.2 5.7	3.9 4.3	3.1	2.6	2.2	2.0	F	183 171		100%					M F	231 211	18% 24%	99% 98%	C	337 308	6% 9%	10
0067	0.063	35	9.3	6.2	4.7	3.7	3.1	2.7	2.3	Ė	161		100%					Ė	195	29%	97%	Č	285	11%	10
ozzles	0.067	40	9.9	6.6	5.0	4.0	3.3	2.8	2.5	F	153		100%					F	182	33%	96%		267	13%	10
	0.071	45	11.0	7.0	5.3	4.2	3.5	3.0	2.6	F	147	49%	100%					F	171	37%	95%		252	15%	10
	0.075	50 60	11.0 12.0	7.4 8.1	5.6 6.1	4.4	3.7 4.1	3.2	3.0	F	141 131	58%	100%					F	162 148	40% 46%	94%	M	239 218	17% 20%	10
	0.085	65	13.0	8.5	6.3	5.1	4.2	3.6	3.2	F	128		100%					F	142	49%	92%	F	210	21%	10
	0.089	70	13.0	8.8	6.6	5.3	4.4	3.8	3.3	F	124		100%					F	136	51%	91%	F	202	22%	10
	0.095	80 Beem	14.0	9.4	7.0 r Spee	5.6 d (on 2	4.7 0" oper	4.0 cing) @	3.5	F	118 0-01		100% 70-01	CDG	0-01	#4028	00 N1	F	127 30-01	55% #4029	90%	F	189 0-01	24% #402	10
	Flow us gpm	Boom psi	4 _{GPA}	Spraye 5 _{GPA}	6GPA	7.5	8GPA	9 _{GPA}	10gpa	Class	VMD	<141	<600	Class	VMD		<600	Class	VMD		<600	Class	VMD	<141	
	0.07	20	5.3	4.2	3.5	2.8	2.6	2.3	2.1	F	175		100%												
00	0.08	25	5.9	4.7	3.9	3.1	2.9	2.6	2.3	F	164		100%		258	15%	97%	N 4	010	000/	070/	0	010	100/	_
80 -01	0.09	30 35	6.4	5.1 5.6	4.3	3.4	3.2	2.9 3.1	2.6	F	156 149	41%	100%	M F	233 214	21% 25%	97% 97%	M F	218 204	23% 27%	97% 97%	C	312 291	10% 12%	9
zzles	0.10	40	7.4	5.9	5.0	4.0	3.7	3.3	3.0	F	143	49%	100%	F	199	29%	97%	F	191	30%	97%	Č	274	14%	9
	0.11	45	7.9	6.3	5.3	4.2	3.9	3.5	3.2	F	139		100%	F	186	33%	97%	F	181	33%	97%		260	15%	9
	0.11	50	8.3	6.6	5.5	4.4	4.2	3.7	3.3	F	134	56%	100%	F	176	36%	98%	F	173	36%	97%	M	248	17%	9
	0.12 0.13	60 65	9.1	7.3	6.1	4.8 5.0	4.5 4.7	4.0	3.6	F	128 125		100% 100%	F	159 152	41% 44%	98% 98%	F	159 153	40% 42%	97% 97%	M	229 221	19% 20%	10
	0.13	70	9.8	7.9	6.5	5.2	4.9	4.4	3.9	Ė	122		100%	F	146	46%	98%	F	148	44%	97%	F	214	21%	10
	0.14	80	11.0	8.4	7.0	5.6	5.3	4.7	4.2	F	117	70%	100%	F	135	50%	98%	F	139	48%	97%	F	202	23%	10
	Flow	Boom psi	4 _{GPA}	Spraye 5gpa		d (on 2 7.5	0" spad 8gpa		12gpa	ER8		#4027 <141	70-015 <600			#4028	8-015 <600		0-015 VMD		0-015 <600		0-015 VMD	#4028 <141	30- >
	us gpm 0.11	20	7.9	6.3	6gpa 5.3	4.2	3.9	10 _{GPA}	2.6	F	199		100%	Class	VIVID	<141	<000	Uldss	VIVID	<141	<000	Class	VIVID	< 141	<
	0.12	25	8.8	7.0	5.9	4.7	4.4	3.5	2.9	F	188		100%	С	286	13%	94%								
80	0.13	30	9.6	7.7	6.4	5.1	4.8	3.9	3.2	F	180		100%		262	16%	95%	C	323	10%	94%	VC	418	4%	8
-015 ozzles	0.14 0.15	35 40	10.0 11.0	8.3	6.9 7.4	5.6 5.9	5.2 5.6	4.2	3.5	F	173 167	32% 34%	100%	M	244	19% 22%	96% 96%	C	301 283	12% 14%	95% 96%		397 380	5% 6%	9
JZZIGS	0.16	45	12.0	9.5	7.9	6.3	5.9	4.7	3.9	Ė	162	37%	100%	M	218	24%	97%	M	269	16%	97%	C	365	6%	9
	0.17	50	12.0	10.0	8.3	6.6	6.2	5.0	4.2	F	158		100%		207	26%	97%	M	256	17%	97%	С	353	7%	9:
	0.18	60	14.0	11.0	9.1	7.3	6.8	5.5	4.5	F	151		100%	F	191	30%	97%	M	236	20%	98%	С	332	8%	9
	0.19	65 70	14.0 15.0	11.0 12.0	9.5	7.6	7.1	5.7 5.9	4.7	F	148 145	44%	100%	F	184 177	32%	97% 98%	M	227 220	21% 22%	98% 99%	C	324 316	8% 9%	9
	0.21	80	16.0	13.0	11.0	8.4	7.9	6.3	5.3	F	140		100%	F	167	36%	98%	F	207	23%	99%	C	302	10%	9
	Flow	Boom		Spraye	r Spee	d (on 2	0" spa	cing) @)		0-02	#402	70-02		0-02	#4028	38-02		80-02	#4029	90-02	DR8	0-02	#402	80-
	us gpm 0.14	psi	5GPA Ω Λ	6GPA	7.5		10 _{GPA}	12 _{GPA}		Class F	101		<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<
	0.14	20 25	9.4	7.0	5.6 6.3	5.3 5.9	4.2	3.5	2.8 3.1	F	184 176		100% 100%	С	273	13%	94%					Н			H
80	0.17	30	10	8.6	6.9	6.4	5.1	4.3	3.4	F	170	34%	100%	M	257	16%	95%	С	326	8%	94%		454	3%	8
-02	0.19	35	11	9.3	7.4	6.9	5.6	4.6	3.7	F	166		100%		244	18%	96%	C	310	10%	94%		435	4%	8
ozzles	0.20 0.21	40 45	12	9.9	7.9 8.4	7.4	5.9 6.3	5.0	4.0	F	161 158		100%		233 224	20%	96% 97%	C	298 287	11%	94% 94%		419 406	4% 5%	8
	0.21	50	13	11.0	8.9	8.3	6.6	5.5	4.4	F	155		100%		216	24%	97%	C	277	14%	95%		394	5%	8
	0.24	60	15	12.0	9.7	9.1	7.3	6.1	4.8	F	150	45%	100%	F	203	27%	98%	М	262	16%	95%	С	375	6%	8
	0.25	65	15	13.0		9.5	7.6	6.3	5.0	F	147		100%	F	198	29%	98%	M	255	17%	95%	C	366	6%	8
	0.26 0.28	70 80	16 17	13.0	10.0	9.8	7.9 8.4	6.5 7.0	5.2 5.6	F	145 142		100% 100%	F	193 184	30% 32%	98% 98%	M	249 239	17% 19%	95% 95%	C	359 346	7% 7%	9
	Flow	Boom				d (on 2			0.0		0-025		70-025		0-025		8-025		30-025		0-025		0-025	#4028	
	us gpm	psi	5gpa	6gpa	7.5	8 _{GPA}	10gpa	12gpa	15gpa	Class	VMD	<141	<600				<600	Class			<600		VMD		<
	0.18	20	11	8.8	7.0	6.6	5.3	4.4	3.5	M	232		100%	0-	0.1 =	001	0464								H
80	0.20	25	12	9.8	7.8 8.6	7.3 8.0	5.9 6.4	4.9 5.4	3.9 4.3	M F	219 209		100%		315 296	9% 11%	91% 93%	VC	425	5%	81%	ΥC	460	3%	7
·025	0.22	30 35	14	12.0	9.3	8.7	6.9	5.8	4.6	F	200		100%		281	13%	94%	VC VC	425	6%	83%		443	4%	7
ozzles	0.25	40	15	12.0	9.9	9.3	7.4	6.2	5.0	F	194		100%		268	15%	94%	C	382	6%	85%		430	4%	8
	0.27	45	16	13	11.0	9.8	7.9	6.6	5.3	F	188	30%	100%	M	257	17%	95%	С	367	7%	86%		418	5%	8
	0.28	50 60	17	14	11.0	10.0	8.3	6.9	5.5	F	182		100%		248	18%	95%	C	353	8%	87%		408	5%	8
	0.31	60 65	18 19	15 16	12.0 13.0	11.0	9.1	7.6 7.9	6.1	÷	174 170	34%	100% 100%	M	233 226	20%	96% 96%	C	330 321	9% 10%	89% 89%		391 383	6% 6%	8
							9.8	8.2	6.5	Ė	167		100%		221	22%	97%	C	312	10%	90%				
	0.33	70	20	16	13.0	12.0	3.0	0.2	0.0		107	31 /0	100 /0	171	221	22/0	31 /0	U	312	10 /0	30 /0	Ų.	377	7%	86

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. "Shown application information is based on water @ 80°F in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 80° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

ASABE Spray Classification (ASABE S572.1 Standard)

Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data by 3rd partly, from paray spectrum recording equipment (without wind tunned use), has been used to classify spray quality for this chart. Extra data (e.g., VMD, etc.) can vary Very Coarse (C)

Very Coarse (VC)

Extremel testing equipment and method, and is provided as an educational resource only.

Ultra Coarse (UC)

Ultra Coarse (UC)

VMD (Volume Median Diameter) The median droplet (in μ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141μ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray

% of volume which is made up of 'small' droplets, useful for coverage As % of useful droplets lowers,

υ υ ι τυ-υb verified	ed on Phase Do	ppler Particl	e Analyzer (F	ded as an PDPA); tips s	sized over 11	10-06 verifie	d on Malver	n. 📕 Ult	ra Coa	rse (U	se (XC) C)	h	alf made	up of	droplets	larger.	d	rift wil	increas	e substa	nuany.	┸	overai	i coveraç	ge is re
	Flow	Boom			er Spee						0-03					#4028							30-03		280-03
	us gpm 0.21	psi 20	5 _{GPA}	6gPA 11.0	7.5 8.4	8 _{GPA} 7.9	10gpa 6.3	12gpa 5.3	15GPA 4.2	Class	VMD 233	<141 17%	<600 99%	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
	0.24	25	14	12.0	9.4	8.8	7.0	5.9	4.7	M	222	20%	99%	С	368	7%	88%					М			
80	0.26	30	15	13	10.0	9.6	7.7	6.4	5.1	F	214	23%	99%	С	344	9%	89%	VC	432	5%	81%	XC	481	3%	72%
-03	0.28	35	17	14	11.0	10.0	8.3	6.9	5.6	F	207	25%	99%	C	325	11%	90%	VC	409	6%	83%	XC	462	4%	75%
Nozzles	0.30	40	18	15	12.0	11.0	8.9	7.4	5.9	F	201	26%	99%	C	309	12%	91%	C	390	7%	85%	VC	447	4%	77%
	0.32	45 50	19 20	16 17	13.0 13	12.0 12.0	9.5	7.9 8.3	6.6	F	196 192	28% 29%	99%	C	296 285	14% 15%	91% 92%	C	374 360	7% 8%	86% 88%	VC VC	433 422	5% 5%	79% 80%
	0.34	60	22	18	15		11.0	9.1	7.3	F	184	32%	99%	M	266	17%	93%	C	337	9%	89%	C	403	6%	83%
	0.38	65	23	19	15		11.0	9.5	7.6	F	181	33%	99%	M	258	18%	93%	C	327	10%	90%		395	6%	84%
	0.40	70	24	20	16		12.0	9.8	7.9	F	179	34%	99%	M	251	18%	93%	С	319	10%	91%	С	387	7%	84%
	0.42	80	25	21	17	16		11.0	8.4	F	174	35%	99%	M	239	20%	94%	С	304	11%	92%	C	374	7%	86%
	Flow us gpm	Boom psi	8 _{GPA}	Spraye 10gpa	er Speel 12.5	d (on 2) 15gpa	0" spac 20gpa		30gpa	Class	0-04 VMD	<141	70-04 <600	Class	0-04 VMD	#4028 <141		Class	30-04 VMD		90-04 <600	Class	80-04 VMD	<141	80-04! 600>
	0.28	20	11	8.4	6.7	5.6	4.2	3.4	2.8	M	251	16%	99%	Class	VIVID	< 141	<000	Class	VIVID	<141	<000	Class	VIVID	<141	<000
	0.32	25	13	9.4	7.5	6.3	4.7	3.8	3.1	M	239	19%	99%	С	369	5%	85%								
80	0.35	30	14	10	8.2	6.9	5.1	4.1	3.4	М	230	21%	99%	С	349	7%	87%	VC	420	5%	80%	XC	543	2%	62%
-04	0.37	35	15	11	8.9	7.4	5.6	4.4	3.7	M	222	22%	99%	C	331	9%	88%	VC	401	6%	82%	XC	523	3%	65%
Nozzles	0.40	40	16	12	10	7.9	5.9	4.8	4.0	M	216	24%	99%	C	316	10%	89%	C	385	7%	84%	XC	507	3%	68%
	0.42	45 50	17 18	13 13	10	8.4	6.3	5.0 5.3	4.2	F	211	25% 26%	99%	C	303 291	11% 12%	90% 91%	C	372 360	8% 9%	85% 86%	XC	493	3% 4%	70%
	0.49	60	19	15	12	10	7.3	5.8	4.8	F	198	28%	99%	M	270	14%	92%	C	341	10%	88%		460	4%	75%
	0.51	65	20	15	12	10	7.6	6.1	5.0	F	195	29%	99%	M	261	14%	92%	Č	333	11%	88%	VC	451	5%	76%
	0.53	70	21	16	13	10	7.9	6.3	5.2	F	192	29%	99%	М	252	15%	92%	С	326	11%	89%	VC	443	5%	77%
	0.57	80	22	17	13	11	8.4	6.7	5.6	F	186	31%	99%	M	237	16%	93%	С	313	12%	90%	С	429	5%	79%
	Flow	Boom		Spraye 12.5	r Spee		0" spac				0-05 VMD	#402 ¹ <141	70-05		0-05	#4028 <141			30-05 VMD		90-05 <600		80-05 VMD		80-05! 600>
	us gpm 0.35	psi 20	10gpa 11	8.4	15gpa 7.0	18gpa 5.8	20gpa 5.3	25 _{GPA} 4.2	30gpa 3.5	Class C	296	11%	<600 95%	Class	VMD	<141	<000	Class	VIVID	<141	<000	Class	VIVID	<141	<000
	0.40	25	12	9.4	7.8	6.5	5.9	4.7	3.9	Č	280	14%	95%	VC	411	5%	81%								1
80	0.43	30	13	10	8.6	7.1	6.4	5.1	4.3	М	267	16%	95%	С	387	7%	83%	XC	504	3%	68%	XC	574	2%	56%
-05	0.47	35	14	11	9.3	7.7	6.9	5.6	4.6	M	257	18%	95%	С	367	9%	84%	XC	483	4%	71%	XC	555	2%	59%
Nozzles	0.50	40	15	12	10	8.3	7.4	5.9	5.0	M	248	20%	95%	C	349	10%	86%	VC	466	4%	73%	XC	538	2%	62%
	0.53	45	16 17	13	11	8.8	7.9	6.3	5.3	M	241	21% 22%	95%	C	334	11%	87%	VC	451	5%	75%	XC	524	3%	65%
	0.56 0.61	50 60	18	13 15	11	9.2	8.3 9.1	7.3	5.5 6.1	M	235 224	25%	95% 95%	C	320 296	12% 14%	87% 89%	VC VC	438 417	5% 6%	77% 79%	XC	512 492	3%	67% 70%
	0.64	65	19	15	13	11	10	7.6	6.3	M	220	26%	95%	C	286	14%	89%	C	408	6%	81%	XC	483	4%	71%
	0.66	70	20	16	13	11	10	7.9	6.5	F	215	26%	95%	Č	276	15%	90%	Č	400	6%	81%	VC	475	4%	72%
	0.71	80	21	17	14	12	11	8.4	7.0	F	208	28%	95%	М	258	16%	91%	С	385	7%	83%	VC	461	4%	74%
	Flow	Boom		Spraye		d (on 2					0-06		70-06		0-06	#4028			30-06		90-06		30-06		80-06
	us gpm 0.42	psi 20	10 _{GPA}	12.5 10	15gpa 8.4	7.0	6.3	30gpa 4.2	35gpa 3.6	Class	VMD 322	<141 12%	<600 92%	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
	0.42	25	14	11	9.4	7.8	7.0	4.2	4.0	C	308	15%	91%	VC	440	4%	78%					\vdash			
80	0.52	30	15	12	10	8.6	7.7	5.1	4.4	Č	296	17%	91%	VC	420	5%	81%	XC	526	2%	64%	XC	596	1%	51%
-06	0.56	35	17	13	11	9.3	8.3	5.6	4.8	С	287	18%	91%	VC	403	6%	83%	XC	508	3%	67%	XC	579	2%	54%
Nozzles	0.60	40	18	14	12	10	8.9	5.9	5.1	С	279	20%	91%	С	390	7%	84%	XC	492	3%	70%	XC	564	2%	57%
	0.64	45	19	15	13	11	10	6.3	5.4	С	273	21%	91%	C	378	7%	85%	XC	479	4%	72%	XC	551	2%	59%
	0.67	50 60	20	16 17	13	11	10	7.3	5.7 6.2	M	267 257	22% 24%	90%	C	368 351	8% 9%	86% 88%	VC VC	468 448	4% 5%	73% 76%	XC	540 521	3%	61%
	0.76	65	23	18	15	13	11	7.6	6.5	M	253	25%	90%	C	344				440						65%
	0.79	70	24	19	16	13	12	7.9	6.7	M								VC:	440						
	0.85	80									249					9% 10%	89% 89%	VC VC	440 433	5%	77%	XC	513	3%	
			25	20	17	14	13	8.4	7.2	M	249 242	26% 27%	90%	C C	337 326	10% 10%	89% 89% 90%	VC VC C	440 433 419					3% 3% 3%	66%
	Flow	Boom		Spraye	r Spee	d (on 2	0" spac	ing) @	7.2	M ER8	242 0-08	26% 27% #402	90% 90% 70-08	C C SR8	337 326 0-08	10% 10% #4028	89% 90% 38-08	VC C MR	433 419 30-08	5% 5% 6% #402	77% 78% 80% 90-08	XC XC XC DR8	513 505 492 30-08	3% 3% #402	66% 68% 80-08
	us gpm	psi	15gpa	Spraye 18gpa	r Speei 20gpa	d (on 2 25gpa	0" spac 30gpa	ing) @ 35gpa	7.2 40gpa	M ER8 Class	242 0-08 VMD	26% 27% #402 <141	90% 90% 70-08 <600	C C	337 326	10% 10% #4028	89% 90%	VC C MR	433 419	5% 5% 6%	77% 78% 80% 90-08	XC XC XC DR8	513 505 492 30-08	3% 3% #402	66%
	us gpm 0.57	psi 20	15gpa 11	Spraye 18gpa 9.3	20gpa 8.4	d (on 2 25gpa 6.7	0" spac 30gpa 5.6	ing) @ 35gpa 4.8	7.2 40gpa 4.2	M ER8 Class VC	242 0-08 VMD 367	26% 27% #402 <141 12%	90% 90% 70-08 <600 86%	C C SR8 Class	337 326 30-08 VMD	10% 10% #4028 <141	89% 90% 88-08 <600	VC C MR	433 419 30-08	5% 5% 6% #402	77% 78% 80% 90-08	XC XC XC DR8	513 505 492 30-08	3% 3% #402	66% 68% 80-08
80	us gpm 0.57 0.63	psi 20 25	15gpa 11 13	Spraye 18gpa 9.3 10	20gpa 8.4 9.4	d (on 2 25gpa 6.7 7.5	0" spac 30gpa 5.6 6.3	35 _{GPA} 4.8 5.4	7.2 40gpa 4.2 4.7	M ER8 Class VC C	242 0-08 VMD 367 338	26% 27% #402 <141 12% 15%	90% 90% 70-08 <600 86% 89%	C C SR8 Class	337 326 30-08 VMD	10% 10% #4028 <141 7%	89% 90% 88-08 <600	VC C MR Class	433 419 80-08 VMD	5% 5% 6% #402 <141	77% 78% 80% 90-08 <600	XC XC XC DR8 Class	513 505 492 30-08 VMD	3% 3% #402 <141	66% 68% 80-08 <600
80 -08	us gpm 0.57	psi 20	15gpa 11	Spraye 18gpa 9.3	20gpa 8.4	d (on 2 25gpa 6.7	0" spac 30gpa 5.6	ing) @ 35gpa 4.8	7.2 40gpa 4.2	M ER8 Class VC C C	242 0-08 VMD 367 338 317	26% 27% #402 <141 12%	90% 90% 70-08 <600 86%	C SR8 Class UC UC	337 326 30-08 VMD 516 490	10% 10% #4028 <141	89% 90% 88-08 <600	VC C MRS Class	433 419 30-08 VMD	5% 5% 6% #402 <141	77% 78% 80% 90-08	XC XC XC DR8 Class	513 505 492 80-08 VMD	3% 3% #402	66% 68% 80-08
	us gpm 0.57 0.63 0.69 0.75 0.80	20 25 30 35 40	15gpa 11 13 14 15 16	Spraye 18gpa 9.3 10 11 12 13	8.4 9.4 10 11	d (on 2) 25gpa 6.7 7.5 8.2 8.9	0" spac 30gpa 5.6 6.3 6.9 7.4 7.9	35 _{GPA} 4.8 5.4 5.9 6.4 6.8	7.2 40gpa 4.2 4.7 5.1 5.6 5.9	M ER8 Class VC C C M	242 0-08 VMD 367 338 317 300 286	26% 27% #402 <141 12% 15% 17% 19% 21%	90% 90% 70-08 <600 86% 89% 90% 92% 93%	C C SR8	337 326 00-08 VMD 516 490 468 449	10% 10% #4028 <141 7% 8% 8% 9%	89% 90% 38-08 <600 54% 59% 63% 66%	VC C MRt Class UC UC UC	433 419 30-08 VMD 540 518 500	5% 6% #402 <141 6% 7% 8%	77% 78% 80% 90-08 <600 63% 67% 69%	XC XC XC DR8 Class	513 505 492 30-08 VMD 619 600 585	3% #402 <141 3% 4% 4%	66% 68% 80-08 <600 52% 55% 58%
-08	us gpm 0.57 0.63 0.69 0.75 0.80 0.85	psi 20 25 30 35 40 45	15gpa 11 13 14 15 16 17	Spraye 18gpa 9.3 10 11 12 13	9.4 10 11 12 13	d (on 2) 25gpa 6.7 7.5 8.2 8.9 10	0" spac 30gpa 5.6 6.3 6.9 7.4 7.9 8.4	35gpa 4.8 5.4 5.9 6.4 6.8 7.2	7.2 40gpa 4.2 4.7 5.1 5.6 5.9 6.3	M ER8 Class VC C C M M	242 0-08 VMD 367 338 317 300 286 274	26% 27% #402 <141 12% 15% 17% 19% 21% 22%	90% 90% 70-08 <600 86% 89% 90% 92% 93% 93%	C C SR8	337 326 0-08 VMD 516 490 468 449 432	10% 10% #4028 <141 7% 8% 8% 9% 10%	89% 90% 38-08 <600 54% 59% 63% 66% 69%	VC C MRI Class	433 419 30-08 VMD 540 518 500 484	5% 5% 6% #402 <141 6% 7% 8% 9%	77% 78% 80% 90-08 <600 63% 67% 69% 71%	XC XC XC DR8 Class UC UC UC UC	513 505 492 30-08 VMD 619 600 585 571	3% #402 <141 3% 4% 4% 4%	66% 68% 880-08 <600 52% 55% 58% 60%
-08	us gpm 0.57 0.63 0.69 0.75 0.80 0.85 0.89	20 25 30 35 40 45 50	15GPA 11 13 14 15 16 17	Spraye 18gpa 9.3 10 11 12 13 14	8.4 9.4 10 11 12 13	d (on 2) 25gpa 6.7 7.5 8.2 8.9 10 10	0" spac 30gpa 5.6 6.3 6.9 7.4 7.9 8.4 8.9	ing) @ 35gpa 4.8 5.4 5.9 6.4 6.8 7.2 7.6	7.2 40 _{GPA} 4.2 4.7 5.1 5.6 5.9 6.3 6.6	M ER8 Class VC C C M M M	242 0-08 VMD 367 338 317 300 286 274 264	26% 27% #402 <141 12% 15% 17% 19% 21% 22% 23%	90% 90% 70-08 <600 86% 89% 90% 92% 93% 93% 94%	C C SR8	337 326 00-08 VMD 516 490 468 449 432 417	10% 10% #4028 <141 7% 8% 8% 9% 10% 10%	89% 90% 38-08 <600 54% 59% 63% 66% 69% 71%	VC C MRs Class UC UC UC UC UC	433 419 30-08 VMD 540 518 500 484 470	5% 5% 6% #402 <141 6% 7% 8% 9% 9%	77% 78% 80% 90-08 <600 63% 67% 69% 71% 73%	XC XC XC DR8 Class UC UC UC UC UC	513 505 492 80-08 VMD 619 600 585 571 559	3% 3% #402 <141 3% 4% 4% 4% 5%	66% 68% 80-08 <600 52% 55% 60% 62%
-08	us gpm 0.57 0.63 0.69 0.75 0.80 0.85 0.89	20 25 30 35 40 45 50	15GPA 11 13 14 15 16 17 18 19	Spraye 18gpa 9.3 10 11 12 13 14 15	9.4 10 11 12 13 15	d (on 2) 25gpa 6.7 7.5 8.2 8.9 10 10 11	0" spac 30gpa 5.6 6.3 6.9 7.4 7.9 8.4 8.9	5.9 6.4 6.8 7.2 7.6 8.3	7.2 40gpa 4.2 4.7 5.1 5.6 5.9 6.3 6.6 7.3	M ER8 Class VC C C M M M	242 0-08 VMD 367 338 317 300 286 274 264 247	26% 27% #402 <141 12% 15% 17% 19% 21% 22% 23% 26%	90% 90% 70-08 <600 86% 89% 90% 92% 93% 93% 94% 95%	C C SRECULARS	337 326 30-08 VMD 516 490 468 449 432 417 390	10% 10% #4028 <141 7% 8% 8% 9% 10% 10% 11%	89% 90% 38-08 <600 54% 59% 63% 66% 69% 71% 74%	UC UC UC UC XC XC	433 419 30-08 VMD 540 518 500 484 470 448	5% 5% 6% #402 <141 6% 7% 8% 9% 9% 10%	77% 78% 80% 90-08 <600 63% 67% 69% 71% 73% 76%	XC XC XC DR8 Class UC UC UC UC UC UC	513 505 492 80-08 VMD 619 600 585 571 559 539	3% 3% #402 <141 3% 4% 4% 5% 5%	66% 68% 880-08 <600 52% 55% 60% 62% 65%
-08	us gpm 0.57 0.63 0.69 0.75 0.80 0.85 0.89	20 25 30 35 40 45 50	15GPA 11 13 14 15 16 17	Spraye 18gpa 9.3 10 11 12 13 14	8.4 9.4 10 11 12 13	d (on 2) 25gpa 6.7 7.5 8.2 8.9 10 10	0" spac 30gpa 5.6 6.3 6.9 7.4 7.9 8.4 8.9	ing) @ 35gpa 4.8 5.4 5.9 6.4 6.8 7.2 7.6	7.2 40 _{GPA} 4.2 4.7 5.1 5.6 5.9 6.3 6.6	M ER8 Class VC C C M M M	242 0-08 VMD 367 338 317 300 286 274 264	26% 27% #402 <141 12% 15% 17% 19% 21% 22% 23%	90% 90% 70-08 <600 86% 89% 90% 92% 93% 93% 94%	C C SRECULARS	337 326 00-08 VMD 516 490 468 449 432 417	10% 10% #4028 <141 7% 8% 8% 9% 10% 10%	89% 90% 38-08 <600 54% 59% 63% 66% 69% 71%	VC C MRs Class UC UC UC UC UC	433 419 30-08 VMD 540 518 500 484 470	5% 5% 6% #402 <141 6% 7% 8% 9% 9% 10% 11%	77% 78% 80% 90-08 <600 63% 67% 69% 71% 73% 76% 77%	XC XC XC DR8 Class UC UC UC UC UC UC UC	513 505 492 80-08 VMD 619 600 585 571 559	3% 3% #402 <141 3% 4% 4% 4% 5%	66% 68% 880-08 <600 52% 55% 58% 60%
-08	us gpm 0.57 0.63 0.69 0.75 0.80 0.85 0.89 0.98 1.02	20 25 30 35 40 45 50 60	15GPA 11 13 14 15 16 17 18 19 20	Spraye 18gpa 9.3 10 11 12 13 14 15 16	20gpa 8.4 9.4 10 11 12 13 13 15	d (on 2 25gPA 6.7 7.5 8.2 8.9 10 11 12	0" spac 30gpa 5.6 6.3 6.9 7.4 7.9 8.4 8.9 10	ing) @ 35gpa 4.8 5.4 5.9 6.4 6.8 7.2 7.6 8.3 8.7	7.2 40gPA 4.2 4.7 5.1 5.6 5.9 6.3 6.6 7.3 7.6	M ER8 Class VC C C M M M M	242 0-08 VMD 367 338 317 300 286 274 264 247 240	26% 27% #402' <141 12% 15% 17% 19% 21% 22% 23% 26% 27% 28% 29%	90% 90% 70-08 <600 86% 89% 90% 92% 93% 93% 94% 95%	C C C SR8	337 326 0-08 VMD 516 490 468 449 432 417 390 379 368 349	10% 10% #4028 <141 7% 8% 8% 9% 10% 11% 12% 12% 13%	89% 90% 38-08 <600 54% 59% 63% 66% 69% 71% 74% 75%	UC UC UC XC XC XC VC	433 419 30-08 VMD 540 518 500 484 470 448 438 430 415	5% 5% 6% #402! <141 6% 7% 8% 9% 10% 11% 11% 12%	77% 78% 80% 90-08 <600 63% 67% 69% 71% 73% 76% 77% 80%	XC XC XC DR8 Class UC UC UC UC UC UC UC UC UC	513 505 492 30-08 VMD 619 600 585 571 559 539 531 523 509	3% #402: <141 3% 4% 4% 4% 5% 5% 5% 6%	66% 68% 880-08 <600 52% 55% 58% 60% 62% 65%
-08	us gpm 0.57 0.63 0.69 0.75 0.80 0.85 0.98 1.02 1.06 1.13	20 25 30 35 40 45 50 60 65 70 80	15GPA 11 13 14 15 16 17 18 19 20 21 22	Spraye 18gpa 9.3 10 11 12 13 14 15 16 17 17 19 Spraye	20gpa 8.4 9.4 10 11 12 13 13 15 15 16 17	d (on 2 25gpa 6.7 7.5 8.2 8.9 10 10 11 12 12 13 13 d (on 2	0" spac 30gpa 5.6 6.3 6.9 7.4 7.9 8.4 8.9 10 10 11	35gPA 4.8 5.4 5.9 6.4 6.8 7.2 7.6 8.3 8.7 9.0 10	7.2 40gpa 4.2 4.7 5.1 5.6 5.9 6.3 6.6 7.3 7.6 7.9 8.4	M ER8 Class VC C C M M M F F F	242 0-08 VMD 367 338 317 300 286 274 264 247 240 233 223 0-10	26% 27% #402' <141 12% 15% 17% 19% 21% 22% 23% 26% 27% 28% 29% #402	90% 90% 70-08 <600 86% 89% 90% 92% 93% 93% 94% 95% 95% 95% 96% 70-10	C C C SR8	337 326 0-08 VMD 516 490 468 449 432 417 390 379 368 349	10% 10% #4028 <141 7% 8% 8% 9% 10% 11% 12% 12% 13% #4028	89% 90% 38-08 <600 54% 59% 63% 66% 69% 71% 74% 75% 76% 78%	UC UC UC XC XC XC VC	433 419 30-08 VMD 540 518 500 484 470 448 438 430 415	5% 5% 6% #402! <141 6% 7% 8% 9% 10% 11% 11% 12% #402!	77% 78% 80% 90-08 <600 63% 67% 69% 71% 73% 76% 77% 80% 90-10	XC XC XC DR8 Class UC UC UC UC UC UC UC	513 505 492 30-08 VMD 619 600 585 571 559 539 531 523 509 30-10	3% #402: <141 3% 4% 4% 4% 5% 5% 6% 6% #402:	52% 55% 66% 66% 66% 66% 67% 69%
-08	us gpm 0.57 0.63 0.69 0.75 0.80 0.85 0.89 1.02 1.06 1.13 Flow us gpm	98i 20 25 30 35 40 45 50 60 65 70 80	15GPA 11 13 14 15 16 17 18 19 20 21 22	Spraye 18gpa 9.3 10 11 12 13 14 15 16 17 17 19 Spraye 18gpa	20gpa 8.4 9.4 10 11 12 13 13 15 15 16 17 2r Speed	d (on 2) 25gpa 6.7 7.5 8.2 8.9 10 11 12 12 13 13 d (on 2) 25gpa	0" spac 30gpa 5.6 6.3 6.9 7.4 7.9 8.4 8.9 10 10 11 0" spac 30gpa	35gPA 4.8 5.4 5.9 6.4 6.8 7.2 7.6 8.3 8.7 9.0 10 sing) @	7.2 40gpa 4.2 4.7 5.1 5.6 5.9 6.3 6.6 7.3 7.6 7.9 8.4	M ER8 Class VC C C M M M F F F F ER8 Class	242 0-08 VMD 367 338 317 300 286 274 264 247 240 233 223 0-10 VMD	26% 27% #402 <141 12% 15% 17% 19% 21% 22% 23% 26% 27% 28% 29% #402 <141	90% 90% 70-08 <600 86% 89% 90% 92% 93% 93% 94% 95% 95% 95% 96% 70-10	C C C SR8	337 326 0-08 VMD 516 490 468 449 432 417 390 379 368 349	10% 10% #4028 <141 7% 8% 8% 9% 10% 11% 12% 12% 13%	89% 90% 38-08 <600 54% 59% 63% 66% 69% 71% 74% 75% 76% 78%	UC UC UC XC XC XC VC	433 419 30-08 VMD 540 518 500 484 470 448 438 430 415	5% 5% 6% #402! <141 6% 7% 8% 9% 10% 11% 11% 12%	77% 78% 80% 90-08 <600 63% 67% 69% 71% 73% 76% 77% 80%	XC XC XC DR8 Class UC UC UC UC UC UC UC UC UC	513 505 492 30-08 VMD 619 600 585 571 559 539 531 523 509	3% #402 <141 3% 4% 4% 4% 5% 5% 6% 6%	52% 55% 66% 66% 67% 69%
-08	us gpm 0.57 0.63 0.69 0.75 0.80 0.85 0.98 1.02 1.06 1.13 Flow us gpm 0.71	20 25 30 35 40 45 50 60 65 70 80 Boom psi 20	15GPA 11 13 14 15 16 17 18 19 20 21 22 15GPA 14	Spraye 18gpa 9.3 10 11 12 13 14 15 16 17 17 19 Spraye 18gpa 12	20gpa 8.4 9.4 10 11 12 13 15 15 16 17 er Speed 20gpa 11	d (on 2) 25gpa 6.7 7.5 8.2 8.9 10 11 12 12 13 13 d (on 2) 25gpa 8.4	0" spac 30gpa 5.6 6.3 6.9 7.4 7.9 8.4 8.9 10 10 11 0" spac 30gpa 7.0	5.4 5.4 5.9 6.4 6.8 7.2 7.6 8.3 8.7 9.0 10 20 40 60 40 60 60 60 60 60 60 60 60 60 6	7.2 40gpa 4.2 4.7 5.1 5.6 5.9 6.3 6.6 7.3 7.6 7.9 8.4	MER8 Class VC C C M M M M F F F F ER8 Class XC	242 0-08 VMD 367 338 317 300 286 274 264 247 240 233 223 0-10 VMD	26% 27% #402 <141 12% 15% 17% 21% 22% 23% 26% 27% 28% 29% #402 <141 9%	90% 90% 70-08 <600 86% 89% 90% 92% 93% 93% 94% 95% 95% 95% 96% 70-10 <600 78%	C C SR8 Class	337 326 30-08 VMD 516 490 468 449 432 417 390 379 368 349 0-10 VMD	10% 10% #4028 <141 7% 8% 8% 9% 10% 10% 11% 12% 12% 43% **********************************	89% 90% 38-08 <600 54% 59% 63% 66% 69% 71% 74% 76% 78% 38-10 <600	UC UC UC XC XC XC VC	433 419 30-08 VMD 540 518 500 484 470 448 438 430 415	5% 5% 6% #402! <141 6% 7% 8% 9% 10% 11% 11% 12% #402!	77% 78% 80% 90-08 <600 63% 67% 69% 71% 73% 76% 77% 80% 90-10	XC XC XC DR8 Class UC UC UC UC UC UC UC UC UC	513 505 492 30-08 VMD 619 600 585 571 559 539 531 523 509 30-10	3% #402: <141 3% 4% 4% 4% 5% 5% 6% 6% #402:	52% 55% 66% 66% 66% 66% 67% 69%
-08 Nozzles	us gpm 0.57 0.63 0.69 0.75 0.80 0.85 0.89 1.02 1.06 1.13 Flow us gpm 0.71 0.79	psi 20 25 30 35 40 45 50 60 65 70 80 Boom psi 20	15GPA 11 13 14 15 16 17 18 19 20 21 22 15GPA 14	Spraye 18gpa 9.3 10 11 12 13 14 15 16 17 17 19 Spraye 18gpa 12 13	20gpa 8.4 9.4 10 11 12 13 13 15 16 17 r Speed 20gpa 11	d (on 2) 25gpa 6.7 7.5 8.2 8.9 10 11 12 12 13 13 d (on 2) 25gpa 8.4 9.4	0" spac 30gpa 5.6 6.3 6.9 7.4 7.9 8.4 8.9 10 10 11 0" spac 30gpa 7.0 7.8	5.9 6.4 6.8 7.2 7.6 8.3 8.7 9.0 10 5.3 5.9	7.2 40gpa 4.2 4.7 5.1 5.6 5.9 6.3 6.6 7.3 7.6 7.9 8.4	MER8 Class VC C C C M M M M F F F ER8 Class XC XC	242 0-08 VMD 367 338 317 300 286 274 264 247 240 233 223 0-10 VMD 458 428	26% 27% #402' <141 12% 15% 17% 21% 22% 23% 26% 27% 28% 29% #402' <141 9% 10%	90% 90% 70-08 <600 86% 89% 92% 93% 93% 94% 95% 95% 95% 96% 70-10 <600 78%	C C SR8 Class UC UC XC XC XC YC C C SR8 Class	337 326 30-08 VMD 516 490 468 449 432 417 390 379 368 349 0-10 VMD	10% 10% #4028 <141 7% 8% 8% 9% 10% 10% 12% 12% 13% #4028 <141 6%	89% 90% 38-08 <600 54% 59% 63% 66% 69% 71% 74% 75% 76% 78% 38-10 <600 50%	VC C MRi Class	433 419 30-08 VMD 540 518 500 484 470 448 438 430 415 30-10 VMD	5% 5% 6% #402! <141 6% 7% 8% 9% 10% 11% 11% 12% #402 <141	77% 78% 80% 90-08 <600 63% 67% 69% 71% 73% 76% 77% 80% 80% 90-10 <600	XC XC XC DR8 Class UC	513 505 492 30-08 VMD 619 600 585 571 559 539 531 523 509 VMD	3% 3% #402 <141 3% 4% 4% 5% 5% 6% 6% #402 <141	66% 68% 880-08 <600 52% 55% 60% 66% 66% 66% 66% 66%
-08	us gpm 0.57 0.63 0.69 0.75 0.80 0.85 0.98 1.02 1.06 1.13 Flow us gpm 0.71	20 25 30 35 40 45 50 60 65 70 80 Boom psi 20	15GPA 11 13 14 15 16 17 18 19 20 21 22 15GPA 14	Spraye 18gpa 9.3 10 11 12 13 14 15 16 17 17 19 Spraye 18gpa 12	20gpa 8.4 9.4 10 11 12 13 15 15 16 17 er Speed 20gpa 11	d (on 2) 25gpa 6.7 7.5 8.2 8.9 10 11 12 12 13 13 d (on 2) 25gpa 8.4	0" spac 30gpa 5.6 6.3 6.9 7.4 7.9 8.4 8.9 10 10 11 0" spac 30gpa 7.0	5.4 5.4 5.9 6.4 6.8 7.2 7.6 8.3 8.7 9.0 10 20 40 60 40 60 60 60 60 60 60 60 60 60 6	7.2 40gpa 4.2 4.7 5.1 5.6 5.9 6.3 6.6 7.3 7.6 7.9 8.4	MER8 Class VC C C M M M M F F F F ER8 Class XC	242 0-08 VMD 367 338 317 300 286 274 264 247 240 233 223 0-10 VMD	26% 27% #402 <141 12% 15% 17% 21% 22% 23% 26% 27% 28% 29% #402 <141 9%	90% 90% 70-08 <600 86% 89% 90% 92% 93% 93% 94% 95% 95% 95% 96% 70-10 <600 78%	C C C SRE Class	337 326 30-08 VMD 516 490 468 449 432 417 390 379 368 349 0-10 VMD	10% 10% #4028 <141 7% 8% 8% 9% 10% 10% 11% 12% 12% 43% **********************************	89% 90% 38-08 <600 54% 59% 63% 66% 69% 71% 74% 76% 78% 38-10 <600	UC UC UC XC XC XC VC	433 419 30-08 VMD 540 518 500 484 470 448 438 430 415 30-10 VMD	5% 5% 6% #402! <141 6% 7% 8% 9% 10% 11% 11% 12% #402!	77% 78% 80% 90-08 <600 63% 67% 69% 71% 73% 76% 77% 80% 90-10	XC XC XC XC DR8 Class UC	513 505 492 30-08 VMD 619 600 585 571 559 539 531 523 509 VMD	3% #402: <141 3% 4% 4% 4% 5% 5% 6% 6% #402:	66% 68% 880-08 <600 52% 55% 60% 62% 65% 665% 669% 80-10 <600
-08 Nozzles	us gpm 0.57 0.63 0.69 0.75 0.80 0.85 0.89 1.02 1.06 1.13 Flow us gpm 0.71 0.79 0.87 0.94 1.00	psi 20 25 30 35 40 45 50 60 65 70 80 80 80 9si 20 25 30 35 40	15GPA 11 13 14 15 16 17 18 19 20 21 22 15GPA 14 16 17 19 20	Spraye 18gpa 9.3 10 11 12 13 14 15 16 17 17 19 Spraye 18gpa 12 13 14 15 17 17 19 19 10 11 12 11 11 12 11 11 11 11 11 11 11 11	20GPA 8.4 9.4 10 11 12 13 13 15 16 17 21 Speed 20GPA 11 11 11 11 11 11 11 11 11 11 11 11 11	d (on 2) 25gpa 6.7 7.5 8.2 8.9 10 11 12 12 13 13 d (on 2) 25gpa 8.4 10 11 12	0" space 30GPA 5.6 6.3 6.9 7.4 7.9 8.4 8.9 10 10 11 0" space 30GPA 7.8 8.6 9.3 10	Sing) @ 35GPA 4.8 5.4 5.9 6.4 6.8 7.2 7.6 8.3 8.7 9.0 10 Sing) @ 40GPA 5.3 5.9 6.4 6.9 7.4	7.2 40gpa 4.2 4.7 5.1 5.6 6.3 6.6 7.3 7.6 7.9 8.4 4.2 4.7 5.1 5.5 5.9	M ER8 Class VC C C M M M M F F F ER8 Class XC XC C C C C C C C C C C C C C C C C	242 0-08 VMD 367 338 317 300 286 274 240 233 223 0-10 VMD 458 405 386 371	26% 27% #402 <141 12% 15% 21% 22% 23% 26% 27% 28% 29% 402 <141 10% 11% 11% 11% 11% 11% 11% 11	90% 90% 70-08 86% 90% 90% 86% 90% 92% 93% 95% 95% 95% 96% 70-10 600 78% 82% 83% 84%	C C SR8 Class UC VC VC C SR8 Class UC UC VC	337 326 00-08 VMD 516 490 468 449 432 417 390 368 349 00-10 VMD 537 512 490 472	10% 10% #402t <141 7% 8% 8% 9% 10% 11% 12% 13% #402t <141 6% 7% 8%	89% 90% 88-08 <<600 554% 59% 63% 66% 69% 71% 74% 75% 76% 78% 8-10 <=600 55% 59% 63%	VC C MRi Class UC UC UC VC XC XC XC VC MRi Class	433 419 30-08 VMD 518 500 484 470 448 438 430 415 30-10 VMD	5% 6% #402: <141 6% 7% 8% 9% 10% 11% 12% #402: <141 5% 6% 6%	77% 78% 80% 80% 63% 67% 63% 77% 78% 80% 69% 69% 65% 67%	XC XC XC XC DR8 Class UC	513 505 492 30-08 VMD 619 600 585 571 559 531 523 509 VMD VMD	3% 3% #402: <141 3% 4% 4% 5% 6% #402: <141 4% 5% 5% 5% 5%	66% 68% 880-08 <600 55% 55% 60% 62% 665% 667% 80-10 <600 55% 55% 55% 55%
-08 Nozzles	us gpm 0.57 0.63 0.69 0.75 0.80 0.85 0.98 1.02 1.06 1.13 Flow us gpm 0.71 0.79 0.87 0.87	psi 20 25 30 35 40 45 50 60 65 70 80 80 80 80 20 25 30 40 45 44 45 45 40 45 40 40 40 40 40 40 40 40 40 40 40 40 40	15GPA 11 13 14 15 16 17 18 19 20 21 22 15GPA 14 16 17 19 20 21 22	Spraye 9.3 10 11 12 13 14 15 16 17 17 19 Spraye 12 13 14 15 17 19 18 19 11 11	20gpa 8.4 9.4 10 11 12 13 13 15 15 16 17 20gpa 11 12 13 14 15	d (on 2) 25gpa 6.7 7.5 8.2 8.9 10 11 12 13 13 0 (on 2) 25gpa 8.4 9.4 10 11 12 13	0" spat 30gpa 5.6 6.3 6.9 7.4 7.9 8.4 8.9 10 10 10 10 11 7.0 8.6 9.3 10 10 11 11	sing) @ 35gPA	7.2 40gpa 4.2 4.7 5.6 5.9 6.3 6.6 7.3 7.6 8.4 50gpa 4.2 4.7 5.1 5.6 6.3 6.6 7.3 7.9 8.4	M ER8 Class VC C C M M M M F F F F ER8 XC XC XC C C C C	242 0-08 VMD 367 338 317 300 286 274 240 242 240 240 458 428 428 405 371 358	26% 27% #402 <141 12% 15% 17% 19% 21% 22% 23% 26% 28% 29% 4402 <141 9% 10% 10% 13% 144 14% 15%	90% 90% 70-08 <600 89% 90% 89% 90% 92% 93% 93% 95% 95% 95% 96% 70-10 <600 78% 80% 82% 82% 84% 85%	C C SR8 Class VC XC XC XC C C SR8 Class VC VC C C SR8 Class VC VC XC	337 326 00-08 VMD 516 490 468 449 432 417 390 368 349 00-10 VMD 537 512 490 472 455	10% 10% #4028 <141 7% 8% 8% 9% 10% 11% 12% 13% 4028 <141 6% 7% 7% 8%	89% 90% 88-08 <<600 554% 559% 66% 66% 71% 74% 76% 78% 88-10 <500 55% 65% 65%	VC C MRi Class UC UC UC VC XC XC XC VC MRi Class	433 419 30-08 VMD 518 500 484 470 448 438 415 30-10 VMD	5% 5% 6% #402! <141 6% 7% 8% 9% 10% 11% 11% ±402! <141 5% 6% 6% 6% 7%	77% 78% 80% 90-08 63% 67% 69% 77% 78% 80% 69% 65% 65% 65% 69%	XC XC XC DR8 Class UC	513 505 492 30-08 VMD 619 600 585 571 559 539 0-10 VMD VMD 619 600 619 585 571 559 509 611 611 658 586 586 596 607 608 609 609 609 609 609 609 609 609	3% #402: <141 3% 4% 4% 5% 5% 6% 6% 44% 5% 5% 6% 5% 6% 6%	66% 68% 80-08 80-08 80-08 52% 55% 58% 60% 62% 65% 66% 65% 55% 55% 55% 55% 55% 55% 55
-08 Nozzles	us gpm 0.57 0.63 0.69 0.75 0.80 0.85 0.98 1.02 1.06 1.13 Flow us gpm 0.71 0.79 0.87 0.94 1.00 1.106	20 25 30 35 40 45 50 60 65 70 80 80 80 80 20 25 30 44 45 45 45 40 45 45 40 45 45 40 45 45 40 45 40 40 40 40 40 40 40 40 40 40 40 40 40	15GPA 11 13 14 15 16 17 18 19 20 21 22 21 22 15GPA 14 16 17 19 20 21 22 21 22	Spraye 186PA 9.3 10 11 12 13 14 15 16 17 17 19 18 18 18	20gpa 8.4 9.4 10 11 12 13 15 15 16 17 20gpa 11 12 13 14 15 16 17	d (on 2) 25GPA 6.7 7.5 8.2 9 10 10 11 12 12 13 13 14 10 11 11 12 12 13 13 13 13 13 13 13 13 13 13	0" spat 30gpa 5.6 6.3 6.9 6.9 8.4 8.9 10 10 10 11 11 30gpa 7.0 7.8 8.6 9.3 10 11 11 11 11 11 11	sing) @ 35gPA	7.2 40gpa 4.2 4.7 5.6 5.9 6.3 6.6 7.3 7.6 7.9 8.4 4.2 4.7 5.1 5.6 6.3 6.6 7.5 7.9 6.3 6.6 7.9 6.3 6.6 6.7 7.9 6.3 6.6 7.9 6.3 6.6 6.7 7.9 6.3 6.6 7.9 6.7 7.9 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	M ER8 Class VC C C C M M M M F F F ER8 Class CL C C C C C C C C C C C C C C C C C	242 0-08 VMD 367 338 317 300 286 274 240 233 223 0-10 VMD 458 428 405 386 428 405 386 387 386 386 386 386 387 387 387 388 388 488 488 488 488 488 488	26% 27% #4022 <141 15% 17% 19% 21% 22% 23% 26% 27% 28% 29% 10% 112% 113% 113% 15% 16%	90% 90% 70-08 <600 89% 92% 93% 93% 93% 95% 95% 95% 80% 80% 82% 83% 85% 86%	C C SR8 Class UC UC XC XC XC YC C C SR8 Class UC VC VC C C SR8 Class	337 326 00-08 VMD 516 490 468 449 432 379 368 349 00-10 VMD 537 512 490 492 492 492 472 472 472 475 441	10% 10% #4028 <141 7% 8% 9% 10% 11% 12% 13% #4024 <141 6% 7% 7% 8% 8% 9%	89% 90% 38-08 <600 54% 59% 63% 66% 74% 775% 76% 8-10 55% 55% 63% 66% 66% 66% 66% 69%	VC C MRi Class UC UC UC VC XC XC XC VC VC UC	433 419 30-08 VMD 518 500 484 438 430 415 503-10 VMD 546 528 503-10 VMD	5% 6% #402! <141 6% 7% 8% 9% 9% 10% 11% 112% #402 <141 5% 6% 7% 6% 7%	77% 78% 80% 80% 90-08 63% 67% 69% 71% 78% 80% 90-10 <62% 67% 67% 67% 67% 67% 67% 67% 77% 77% 67%	XC XC XC XC DR8 Class UC	513 505 492 619 600 585 571 559 539 0-10 VMD	3% #402: <141 3% 4% 4% 5% 5% 6% 6% #402: <141 4% 5% 6% 6% 6% 6% 6% 6%	66% 68% 80-088 80-088 52% 55% 60% 62% 65% 66% 66% 52% 55% 55% 55% 55% 55% 55% 60%
-08 Nozzles	us gpm 0.57 0.63 0.69 0.75 0.80 0.89 0.98 1.02 1.13 Flow us gpm 0.71 0.79 0.87 0.94 1.00 1.00	20 25 30 35 40 45 50 60 65 70 80 80 80 80 20 25 30 35 44 45 45 45 40 45 45 40 45 40 45 40 40 40 40 40 40 40 40 40 40 40 40 40	156PA 11 13 14 15 16 17 18 19 20 21 22 	Spraye 186PA 9.3 10 11 12 13 14 15 16 17 17 19 Spraye 186PA 12 13 14 15 16 17 17 19 18 18 18 20	7 Speed 20 GPA 8.4 9.4 10 11 12 13 15 15 16 17 Speed 20 GPA 11 12 13 14 15 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	d (on 2) 25GPA 6.7 7.55 8.2 8.9 10 10 11 12 12 13 13 10 10 11 11 12 12 13 13 13 15 15	0" spat 30gpa 5.6 6.3 30gpa 6.9 9.7 4 7.9 8.4 8.9 10 10 10 10 10 10 7.8 8.6 9.3 10 7.8 8.6 9.3 10 11 11 11 12	sing) @ 356PA	7.2 40gPA 4.2 4.7 5.1 5.6 5.9 6.3 6.6 7.3 7.6 7.9 8.4 4.7 5.1 5.6 5.9 6.6 6.6 6.6 6.6 6.3 6.6 6.6 6.6	M ER8 Class VC C C C M M M M F F F ER8 XC XC XC C C C C M M M M M M M M M M M	242 0-08 VMD 367 338 317 300 286 274 240 233 223 0-10 VMD 458 428 405 386 371 358 358 346 328	26% 27% #4022 <141 15% 17% 19% 21% 22% 23% 26% 27% 28% 29% *4022 *402 404 114 106 13% 14% 15% 16% 16% 16% 17% 18% 18% 18% 18% 18% 18% 18% 18	90% 90% 70-08 86% 89% 92% 92% 93% 94% 95% 95% 96% 70-10 86% 82% 83% 84% 85%	C C SR8 Class UC UC XC	337 326 0-08 VMD 516 490 468 449 432 417 390 0-10 VMD 557 512 490 472 490 472 495 441 441 441 441	10% 10% #4028 <141 7% 8% 9% 10% 11% 12% 13% #4028 <141 7% 88 6% 7% 7% 88 88 89 99 10%	89% 90% 88-08 <<600 54% 63% 63% 66% 71% 75% -<600 55% 55% 55% 63% 660 66% 67% 71%	VC C MRi Class UC UC UC UC XC XC XC VC MRi Class	433 419 30-08 VMD 518 5500 484 470 448 438 430 415 528 513 500 484 470 448 430 415 528 513 500 484 470	5% 6% #402! <141 6% 9% 9% 10% 11% 12% #402 <141 5% 6% 6% 7% 6% 6% 7% 8%	77% 78% 80% 80% 90-08 63% 67% 69% 71% 73% 76% 77% 600 62% 65% 67% 69% 72%	XC XC XC XC DR8 Class UC	513 505 492 619 600 585 571 559 531 523 509 VMD VMD 611 596 582 571 596 585 571 596 585 597 598 698 598 598 598 598 598 598 598 5	3% 3% #402: <141 3% 4% 4% 5% 5% 6% 6% 4% 4% 5% 6% 6% 6% 6% 6%	66% 68% 80-08 <600 52% 55% 66% 66% 66% 65% 66% 65% 66% 66% 66
-08 Nozzles	us gpm 0.57 0.63 0.69 0.75 0.80 0.85 0.98 1.02 1.06 1.13 Flow us gpm 0.71 0.79 0.87 0.94 1.00 1.106	20 25 30 35 40 45 50 60 65 70 80 80 80 80 20 25 30 44 45 45 45 40 45 45 40 45 45 40 45 45 40 45 40 40 40 40 40 40 40 40 40 40 40 40 40	15GPA 11 13 14 15 16 17 18 19 20 21 22 21 22 15GPA 14 16 17 19 20 21 22 21 22	Spraye 186PA 9.3 10 11 12 13 14 15 16 17 17 19 18 18 18	20gpa 8.4 9.4 10 11 12 13 15 15 16 17 20gpa 11 12 13 14 15 16 17	d (on 2) 25GPA 6.7 7.5 8.2 9 10 10 11 12 12 13 13 14 10 11 11 12 12 13 13 13 13 13 13 13 13 13 13	0" spat 30gpa 5.6 6.3 6.9 6.9 8.4 8.9 10 10 10 11 11 30gpa 7.0 7.8 8.6 9.3 10 11 11 11 11 11 11	sing) @ 35gPA	7.2 40gpa 4.2 4.7 5.6 5.9 6.3 6.6 7.3 7.6 7.9 8.4 4.2 4.7 5.1 5.6 6.3 6.6 7.5 7.9 6.3 6.6 7.9 6.3 6.6 6.7 7.9 6.3 6.6 7.9 6.3 6.6 6.7 7.9 6.3 6.6 7.9 6.7 7.9 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	M ER8 Class VC C C C M M M M F F F ER8 Class CL C C C C C C C C C C C C C C C C C	242 0-08 VMD 367 338 317 300 286 274 240 233 223 0-10 VMD 458 428 405 386 428 405 386 387 386 386 386 386 387 387 387 388 388 488 488 488 488 488 488	26% 27% #4022 <141 15% 17% 19% 21% 22% 23% 26% 27% 28% 29% 10% 112% 113% 113% 15% 16%	90% 90% 70-08 8-600 86% 99% 92% 93% 93% 94% 95% 95% 95% 96% 80% 82% 84% 85% 86% 87%	C C SR8 Class UC UC XC	337 326 00-08 VMD 516 490 468 449 432 379 368 349 00-10 VMD 537 512 490 492 492 492 472 472 472 475 441	10% 10% #4028 <141 7% 8% 9% 10% 11% 12% 13% #4024 <141 6% 7% 7% 8% 8% 9%	89% 90% 38-08 <600 54% 59% 63% 66% 74% 775% 76% 8-10 55% 55% 63% 66% 66% 66% 66% 69%	VC C MRi Class UC UC UC VC XC XC XC VC VC UC	433 419 30-08 VMD 518 500 484 438 430 415 503-10 VMD 546 528 503-10 VMD	5% 6% #402! <141 6% 7% 8% 9% 9% 10% 11% 112% #402 <141 5% 6% 7% 6% 7%	77% 78% 80% 80% 90-08 63% 67% 69% 71% 78% 80% 90-10 <62% 67% 67% 67% 67% 67% 67% 67% 77% 77% 67%	XC XC XC XC Class UC	513 505 492 619 600 585 571 559 539 0-10 VMD	3% #402: <141 3% 4% 4% 5% 5% 6% 6% #402: <141 4% 5% 6% 6% 6% 6% 6% 6%	66% 68% 80-08 80-08 80-08 52% 55% 58% 60% 62% 65% 66% 65% 55% 55% 55% 55% 55% 55% 55

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. 'Shown application information is based on water @ 80°F in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 80° Spray Tips - Standard Sprayer Systems

	Flow us gpm	Boom psi	20gpa	Spraye 25gpa	r Spee 30gpa	d (on 2 35gpa	0" spac		50gpa	ER8 Class	0-125 VMD	#4027 <141	0-125 <600		0-125 VMD	#4028 <141	38-125 <600		0-125 VMD		90-125 <600	DR8	0-125 VMD	#4028 <141	0-125 <600
80 -125 Nozzles	0.99 1.08 1.17 1.25 1.33 1.40 1.53 1.59 1.65 1.77	25 30 35 40 45 50 60 65 70 80	15 16 17 19 20 21 23 24 25 26	12 13 14 15 16 17 18 19 20 21 Spraye	10 11 12 12 13 14 15 16 16 18	8.4 9.2 10 11 11 12 13 14 14 15	7.3 8.0 8.7 9.3 10 10 11 12 12 13 0" space	6.5 7.1 7.7 8.3 8.8 9.2 10 11 11	5.9 6.4 6.9 7.4 7.9 8.3 9.1 10 10	XC XC VC C C C C C	433 413 397 383 372 362 345 338 331 320 30-15	10% 11% 12% 13% 14% 14% 15% 16% 16%	79% 81% 82% 83% 84% 85% 87% 87% 88% 88%	UC UC UC XC XC XC XC XC XC XC XC	531 509 490 474 460 447 425 416 407 391 30-15	6% 7% 8% 8% 9% 9% 10% 11%	51% 55% 58% 61% 63% 65% 68% 69% 70% 72% 88-15	UC UC UC UC UC UC VC	585 569 556 545 535 519 511 505 493	5% 6% 6% 7% 7% 8% 8% 8% 9%	56% 58% 60% 62% 63% 66% 67% 67% 69% 90-15	UC UC UC UC UC UC UC UC		4% 4% 5% 5% 5% 6% 6% 6% 6%	50% 52% 54% 56% 57% 59% 60% 61% 63%
80 -15 Nozzles	1.19 1.30 1.40 1.50 1.59 1.68 1.84 1.91 1.98 2.12	25 30 35 40 45 50 60 65 70 80	25gpa 14 15 17 18 19 20 22 23 24 25	30gpa 12 13 14 15 16 17 18 19 20 21	35GPA 10 11 12 13 14 14 16 16 17 18	8.8 10 10 11 12 12 14 14 15 16	7.8 8.6 9.3 10 11 11 12 13 13 14 0" space	7.0 7.7 8.3 8.9 10 10 11 11 12 13	55GPA 6.4 7.0 7.6 8.1 8.6 9.1 10 10	XC XC XC VC C C C M M M	VMD 434 412 394 379 366 355 337 329 322 310 80-20	9% 10% 11% 12% 13% 14% 15% 16% 17% 18%	78% 79% 80% 81% 82% 82% 83% 84% 84% 85%	UC UC UC UC XC XC XC	576 554 535 519 505 492 471 461 452 436	5% 6% 6% 6% 7% 7% 7% 7% 8% 8%	43% 47% 51% 53% 56% 58% 61% 62% 63% 65%	UC UC XC XC XC XC XC XC XC	513 495 480 467 456 438 430 422 410 80-20	7% 8% 8% 9% 9% 10% 11% 11% 12%	66% 69% 70% 72% 73% 75% 76% 77% 78% 90-20	UC UC UC UC UC UC UC UC	637 620 605 592 581 562 554 547 534	3% 3% 3% 4% 4% 4% 4% 4% 4% 5%	48% 51% 53% 55% 57% 59% 61% 62% 63%
80 -20 Nozzles	1.58 1.73 1.87 2.00 2.12 2.24 2.45 2.55 2.65 2.83	psi 25 30 35 40 45 50 60 65 70 80	30gpa 16 17 19 20 21 22 24 25 26 28	35gpa 13 15 16 17 18 19 21 22 22 24	12 13 14 15 16 17 18 19 20 21	45gpa 10 11 12 13 14 15 16 17 17	50GPA 9.4 10 11 12 13 15 15 16 17 0" space	8.5 9.4 10 11 11 12 13 14 14 15	7.8 8.6 9.3 10 11 11 12 13 13	VC XC XC XC XC C C C C C	VMD	<141 8% 9% 10% 11% 11% 12% 13% 13% 14% 15%	 <600 71% 73% 75% 76% 78% 81% 81% 82% 83% 70-25 	UC UC UC UC UC UC VC XC XC	VMD	<141 5% 5% 6% 6% 6% 7% 7% 7% 7% 8%	44% 48% 51% 54% 56% 58% 62% 63% 64%	UC UC UC UC UC XC XC XC	VMD	5% 5% 6% 7% 7% 8% 8% 8%	58% 62% 64% 66% 66% 71% 72% 73% 74% 90-25	UC UC UC UC UC UC UC UC	VMD	3% 3% 4% 4% 4% 5% 5% 5% 5%	50% 54% 56% 59% 61% 64% 65% 66% 68%
80 -25 Nozzles	1.98 2.17 2.34 2.50 2.65 2.80 3.06 3.19 3.31 3.54	25 30 35 40 45 50 60 65 70	35gpa 17 18 20 21 23 24 26 27 28 30	40gpa 15 16 17 19 20 21 23 24 25 26	45gpa 13 14 15 17 18 18 20 21 22 23	50gpa 12 13 14 15 16 17 18 19 20 21	55GPA 11 12 13 14 14 15 17 17 18	60GPA 10 11 12 12 13 14 15 16 16 18	70gpa 8.4 9.2 10 11 11 12 13 14 14 15	VC VC VC C C C C C	VMD 485 462 443 427 414 402 383 375 367 354	9% 10% 10% 11% 12% 12% 13% 14% 14%	<600 70% 72% 74% 75% 76% 77% 79% 80% 81%	UC UC UC XC XC XC XC XC XC	VMD 532 511 494 479 466 454 434 425 417 402	<141 5% 5% 6% 6% 7% 7% 7% 8% 8% 8%	51% 54% 57% 59% 61% 62% 65% 66% 67%	UC UC UC UC UC UC UC UC UC	604 583 566 552 539 518 508 500 485	4% 4% 4% 5% 5% 5% 6% 6%	55% 58% 60% 62% 63% 66% 67% 68%	UC UC UC UC UC UC UC UC	657 635 617 601 587 563 553 544 528	3% 3% 3% 3% 3% 4% 4% 4% 4%	46% 49% 52% 55% 57% 60% 61% 62% 64%
80 -30 Nozzles	Flow us gpm 2.37 2.60 2.81 3.00 3.18 3.35 3.67 3.82 3.97 4.24	25 30 35 40 45 50 60 65 70	40gpa 18 19 21 22 24 25 27 28 29 32	50gpa 14 15 17 18 19 20 22 23 24 25	60gpa 12 13 14 15 16 17 18 19 20 21	70gpa 10 11 12 13 14 14 16 16 17	0" space 80gpa 8.8 10 10 11 12 12 14 14 15 16	90gpa 7.8 8.6 9.3 10 11 11 12 13 13	7.0 7.7 8.3 8.9 10 10 11 11 12	UC UC XC XC XC XC XC YC VC	506 481 461 444 430 417 397 388 380 366	<141 5% 6% 7% 7% 8% 9% 9% 10% 10% 11%	67% 69% 71% 73% 74% 75% 77% 77% 78% 79%	UC UC XC XC XC XC XC XC		5% 5% 6% 6% 6% 6% 7% 7%	88-30 <600 54% 57% 59% 61% 62% 65% 66% 67% 69%	UC UC UC UC UC UC UC UC UC	591 572 556 542 530 510 501 493 480	4% 4% 4% 5% 5% 5% 5% 6%		UC UC UC UC UC UC UC	654 623 597 575 556 525 512 500	#4028 <141 2% 2% 3% 3% 3% 3% 4% 4%	_
80 -40 Nozzles	us gpm 3.74 4.00 4.24 4.47 4.90 5.10 5.29 7.07 Flow	35 40 45 50 60 65 70 80	50gpa 22 24 25 27 29 30 31 42	60gpa 19 20 21 22 24 25 26 35	70gpa 16 17 18 19 21 22 22 30 r Speed	80gpa 14 15 16 17 18 19 20 26 d (on 2	0" space 90gpa 12 13 14 15 16 17 17 23 0" space 110	100 11 12 13 13 15 15 16 21	9.3 10 11 11 12 13 13	XC XC XC XC XC XC XC XC XC	VMD 460 444 430 418 398 390 382 369		 <600 71% 73% 74% 75% 77% 77% 78% 79% 70-50 	VC XC XC XC XC XC XC XC	VMD 481 467 455 445 428 420 414	<141 5% 5% 5% 6% 6% 6%	60% 62% 63% 66% 67%	Class UC UC UC XC XC XC	541 524	<141 4% 5% 5% 5% 5% 6% 6%					
80 -50 Nozzles	us gpm 4.68 5.00 5.30 5.59 6.12 6.37 6.61 7.07 Flow us gpm 5.61	35 40 45 50 60 65 70 80	20 21 23 24 26 27 28 30	17 19 20 21 23 24 25 26 Spraye	15 17 18 18 20 21 22 23	100 14 15 16 17 18 19 20 21 d (on 2 160	110 13 14 14 15 17 17 18 19 0" space 180 9.3	12 12 13 14 15 16 16	11 11 12 13 14 15 15 16	XC XC XC XC XC XC XC XC ER8	466 450 437 425 405 396 389 375 30-60 VMD	7% 7% 8% 8% 9% 9% 9% 10% #402 <141 8%	70% 72% 73% 74% 76% 76% 77% 78%												
80 -60 Nozzles	6.00 6.36 6.71 7.35 7.65 7.94 8.49	40 45 50 60 65 70 80	20 21 22 24 25 26 28	15 16 17 18 19 20 21	13 14 14 16 16 17 18	11 12 12 14 14 15 16	10 11 11 12 13 13 14	8.9 10 10 11 11 11 12 13	8.1 8.6 9.1 10 10 11	XC XC XC XC XC XC	444 433 422 405 397 391	8% 9% 9% 10% 10%	70% 71% 72% 74% 75% 76%												

COMBO-JET 110° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE S572.1 Standard)
Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data (by 3rd parly), from spray spectrum recording equipment (without wind tunnus), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.) can vary between testing equipment and method, and is provided as an educational resource only.

Fine (F)
Medium (M)
Coarse (C)
Very Coarse (VC)
Extremely Coarse (XC)
Ultra Coarse (UC)

VMD (Volume Median Diameter)
The median droplet (in µ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141µ (% Driftable Fines)
Percentage of volume which is
likely to drift. As wind & boom
height increase, observed spray
drift will increase substantially.

% <600μ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage. As % of useful droplets lowers, overall coverage is reduced.

Tips sized up to 11						sized over 11						JC)	h:	alf mad	de up of	droplets	larger.	_ _	drift wil	increas	e substa	ntially.	╝┖	overal	ll coveraç	je is re	duced.
Nozzle	Flow		-	Applica	tion Ra	te in U	S Gallo	ns/Acr	9			Sprav	Classi	fication	on; VMI	D (Drop	let Siz	e in u); %<1	41µ (D	rift %):	%<6	300µ (S	Small D	roplets	;)	
Size &	Rate	PSI				Nozzle					ER110)° Serie				° Serie)° Serie				0° Serie			Series
Angle	USGPM	_				Speed -				Class				Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD
	Flow us gpm	Boom	4 _{GPA}	Spraye 5 _{GPA}	r Speei 6gpa	d (on 2) 7.5	U" spac 8 _{GPA}		10gpa	EK1	10-01 VMD		81-01 <600													\vdash	
	0.07	20	5.3	4.2	3.5	_	2.6	2.3	2.1	F	148		100%														
	0.08	25	5.9	4.7	3.9	3.1	2.9	2.6	2.3	F	144		100%												-	\Box	
110	0.09	30	6.4	5.1	4.3	3.4	3.2	2.9	2.6	F	140		100%														
-01	0.09	35	6.9	5.6	4.6	3.7	3.5	3.1	2.8	F	136		100%													\vdash	
Nozzles	0.10 0.11	40 45	7.4 7.9	5.9 6.3	5.0	4.0	3.7	3.3	3.0	F	133		100% 100%											\vdash	\vdash	\vdash	
	0.11	50	8.3	6.6	5.5	4.4	4.2	3.7	3.3	Ė	128		100%											\vdash	+-	\vdash	
	0.12	60	9.1	7.3	6.1	4.8	4.5	4.0	3.6	F	124	62%	100%														
	0.13	65	9.5	7.6	6.3	5.0	4.7	4.2	3.8	F	122		100%											_	↓	\sqcup	
	0.13	70	9.8	7.9	6.5	5.2	4.9	4.4	3.9	F	121		100%											-	-	\vdash	
	0.14 Flow	80 Boom	11.0	8.4 Spraye	7.0	5.6 d (on 20	5.3	4.7	4.2	_	118 10-015		100% 31-015	SR11	0-015	#4028	7-015	MR1	10-015	#4029	1-015	DR11	10-015	#4028	86-015		
	us gpm	psi	4 _{GPA}	5gpa	6GPA	7.5	8 _{GPA}		12gpa	Class		<141												<141			
	0.11	20	7.9	6.3	5.3	4.2	3.9	3.2	2.6	F	153		100%														
110 -	0.12	25	8.8	7.0	5.9	4.7	4.4	3.5	2.9	F	148		100%	M	225	21%	98%	0	000	1101	0.40/	0	000	70/	000/		
110 -015	0.13 0.14	30 35	9.6	7.7 8.3	6.4	5.1 5.6	4.8 5.2	3.9 4.2	3.2	F	145 142		100% 100%	F	215 207	24% 26%	98% 98%	C	322 297	11% 14%	94%	C	366 345	7% 8%	92%		
Nozzles	0.14	40	11.0	8.9	7.4	5.9	5.6	4.5	3.7	F	139	52%	100%		199	28%	98%		277	16%	97%	C	328	10%	94%		
	0.16	45	12.0	9.5	7.9	6.3	5.9	4.7	3.9	F	137	53%	100%	F	193	30%	98%	M	261	18%	98%	С	313	11%	95%		
	0.17	50	12.0	10.0	8.3	6.6	6.2	5.0	4.2	F	134	55%	100%	F	187	32%	98%	M	247	20%	99%	C	301	12%	95%	\square	
	0.18 0.19	60 65	14.0	11.0 11.0	9.1	7.3	6.8 7.1	5.5 5.7	4.5 4.7	F	131 129	58% 59%	100% 100%	F	177 173	34%	98% 98%	M F	225 216	23%	99%	C	281 272	14%	96%		
	0.13	70	15.0	12.0	9.8	7.9	7.4	5.9	4.9	Ė	128	61%	100%	Ė	169	37%	98%	Ė	208	25%	99%	M	265	15%	97%	\vdash	
	0.21	80		13.0	11.0		7.9	6.3	5.3	F	125	63%	100%	F	161	39%	98%	F	194		100%	M	251	17%	97%		
	Flow	Boom			r Speed	_	o" spac			ER1	10-02		81-02	SR1	10-02	#4028			10-02	#4029		DR1	10-02		86-02		
	us gpm 0.14	psi 20	5 _{GPA} 8.4	6 _{GPA}	7.5 5.6	8 _{GPA} 5.3	10gpa 4.2	12 _{GPA} 3.5	15gpa 2.8	Class	173		<600 100%	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600		
	0.14	25	9.4	7.8	6.3	5.9	4.2	3.9	3.1	F	166	36%	100%	М	227	21%	99%								_	\vdash	
110	0.17	30	10	8.6	6.9		5.1	4.3	3.4	F	160		100%		219	23%	99%	С	315	12%	95%	VC	431	5%	82%		
-02	0.19	35	11	9.3	7.4	6.9	5.6	4.6	3.7	F	155		100%		212	24%	99%		295	14%	96%	VC	410	6%	85%	Ш	
Nozzles	0.20 0.21	40 45	12 13	9.9	7.9 8.4	7.4	5.9 6.3	5.0 5.3	4.0	F	151 147		100% 100%	F	206 201	26% 27%	99% 99%	C M	279 265	15% 17%	97% 97%	VC C	392 376	7% 7%	87% 89%	\vdash	
	0.22	50	13	11.0		8.3	6.6	5.5	4.4	F	144		100%	F	196	29%	99%	M	254	19%		C	361	8%	90%	\Box	
	0.24	60	15	12.0	9.7	9.1	7.3	6.1	4.8	F	138	52%	100%	F	188	31%	99%	M	235	21%	98%	С	336	9%	92%		
	0.25	65	15	13.0	10.0		7.6	6.3	5.0	F	135		100%	F	184	32%	99%	M	227	22%	98%	C	325	10%	92%	Ш	
	0.26 0.28	70 80	16 17	13.0	10.0		7.9 8.4	6.5 7.0	5.2 5.6	F	133 128	55%	100% 100%	F	181 175	33%	99% 99%	M F	220 208	23% 25%	98% 99%	C	315 297	10%	93%	\vdash	
	Flow	Boom				d (on 20				_	10-025		31-025		0-025			_	10-025		1-025		10-025		86-025	UR1	10-025
	us gpm	psi	5 _{GPA}	6gpa	7.5	8 _{GPA}	10gpa		15gpa	Class		<141		Class	VMD						<600				<600		
	0.18	20	11	8.8	7.0	6.6	5.3	4.4	3.5	F		28%			044	400/	000/									#402	92-025
110	0.20	25 30	12 13	9.8	7.8 8.6	7.3 8.0	5.9 6.4	4.9 5.4	3.9 4.3	F	190 186	29% 29%	100% 100%		244 236	18% 20%	98% 98%	С	350	9%	91%	VC	434	5%	80%		
-025	0.23	35	14	12.0	9.3	8.7	6.9	5.8	4.6	F	183	30%	100%		228	21%	98%	C	334	10%	92%	VC	414	6%	83%	UC	564
Nozzles	0.25	40	15	12.0	9.9	9.3	7.4	6.2	5.0	F	181	30%	100%	M	222	23%	98%	С	320	11%	93%	VC	398	7%	86%	UC	541
	0.27	45	16	13	11.0		7.9	6.6	5.3	F	178	30%	100%		216	24%	98%	C	307	12%	94%	C	383	7%			522
	0.28	50 60	17 18	14 15	11.0	10.0	8.3 9.1	6.9 7.6	5.5 6.1	F	176 173	30%	100% 100%	F	211	25% 27%	98% 98%	C	296 277	13% 15%	95% 96%	C	370 347	8% 9%	92%	UC XC	504 474
	0.32	65	19	16	13.0		9.5	7.0	6.3	F	171	31%	100%	F	199	28%	98%	M	268	16%	96%	C	337	9%	92%	XC	461
	0.33	70	20	16	13.0	12.0	9.8	8.2	6.5	F	170	31%	100%	F	195	29%	98%	M	261	17%	96%	С	328	10%	93%	XC	448
	0.35	80	21	18	14		11.0		7.0	F	167		100%	F	189	30%	98%	M	247	18%	97%	C	311	11%	94%	XC	426
	Flow us gpm	Boom psi	5gpa			d (on 20							81-03 -600		10-03 VMD				10-03 VMD		91-03 -600		10-03 VMD		86-03 <600		10-03 VMD
	0.21					7.9								OldSS	VIVID	<141	<000	CidSS	VIVID	<141	<000	OidSS	VIVID	<141	<000		292-03
	0.24	25	14	12.0	9.4	8.8	7.0	5.9	4.7	F	190	29%	99%		319	9%	94%										
110	0.26	30	15	13	10.0		7.7	6.4	5.1	F	183	31%	99%		303	11%	95%		394	6%	86%		479	4%	74%	l l'o	040
-03 Nozzles	0.28	35 40	17 18	14 15		10.0	8.3 8.9	6.9 7.4	5.6 5.9	F	178 173	33%	98% 98%		290 279	13% 15%	95% 96%		376 360	8%	89% 91%		460 443	4% 5%	77% 80%		612 589
NUZZIES	0.30	45	19	16		12.0	9.5	7.4	6.3	F	169		98%		269	16%	96%		346	9%	92%		443	5%	82%		570
	0.34	50	20	17	13	12.0	10.0		6.6	F	165	37%	98%		260		97%	С	333	10%			414		84%		552
	0.37	60	22	18	15	14.0	11.0	9.1	7.3	F	159		97%	M	244	19%	97%	С	311		94%	С	391	6%	86%		521
	0.38	65	23	19	15		11.0		7.6	F	156	40%	97%		237	20%		C	301		95%	C	381	7%	87%		507
	0.40	70 80	24 25	20	16 17		12.0 13.0		7.9 8.4	F		41%	97% 96%		231	21% 22%	98%		292 276		95% 96%		371 354	7% 8%	90%		495 472
	0.42	UU	20	41		_ 10	13.0	11.0	0.4		149	14070	3070		220	4470	JU 70	U	2/0	1470	3070	U	554	J U70	1 3070	I VO	412

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. 'Shown application information is based on water @ 80°F in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 110° Spray Tips - Standard Sprayer Systems

🜓 Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE S572.1 Standard)
Spray quality is categorized based on Dv0.1 and VMD droplet sizes.
Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunn use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.) can vary between testing equipment and method, and is provided as an educational resource only.

Fine (F) Medium (M) Coarse (C) '
Very Coarse (VC)
Extremely Coarse (XC)
Ultra Coarse (UC) VMD (Volume Median Diameter) The median droplet (in u) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141μ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially.

% <600μ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage As % of useful droplets lowers, overall coverage is reduced.

s sized up to 11	_				_						arse (C	(U)		004	10.01				10.01		04.04	224			00.04	LIBAAA
	Flow us gpm	Boom psi	8gpa		er Spee 12.5			icing) @ 25gpa			10-04 VMD		81-04 <600		10-04 VMD				10-04 VMD							UR110 Class V
	0.28	20	11	8.4	6.7	5.6	4.2	3.4	2.8	M	240		97%	Ulass	VIVID	< 141	<000	Ulass	VIVID	< 141	<000	Class	VIVID	< 141	<000	#40292
	0.32	25	13	9.4	7.5	6.3	4.7	3.8	3.1	M	232	20%	97%	С	330	9%	93%									
110	0.35	30	14	10	8.2	6.9	5.1	4.1	3.4	M	225	22%	97%	С	314	11%	94%		416	5%	84%	XC	510	3%	69%	
-04	0.37	35	15	11	8.9	7.4	5.6	4.4	3.7	M	220	23%	97%	C	300	12%	95%	VC	395	6%	87%	XC	488	4%	73%	UC 6
Nozzles	0.40	40	16	12	10	7.9	5.9	4.8	4.0	F	215	24%	96%	C	288	14%	95%		377	7%	89%	VC	469	4%	76%	UC 6
	0.42	45 50	17	13	10	8.4	6.3	5.0	4.4	F	210 206	25% 26%	96% 96%	C M	278 269	15% 16%	96% 96%	C	361 346	8% 8%	91% 92%	VC VC	453 438	5% 5%	78% 80%	UC 5
	0.49	60	19	15	12	10	7.3	5.8	4.8	F	199	28%	96%	M	253	17%	96%	Č	321	9%	94%	VC	412	6%	83%	UC 5
	0.51	65	20	15	12	10	7.6	6.1	5.0	F	196	29%	96%	M	246	18%	97%	С	310	10%	94%	С	401	6%	84%	UC 5
	0.53	70	21	16	13	10	7.9	6.3	5.2	F	194	29%	95%	M	239	19%	97%	C	300	10%	95%	С	391	6%	85%	UC 5
	0.57	80	22	17	13	11	8.4		5.6	F	189	30%	95%		228	20%	97%			11%		C	372	7%	87%	UC 4
	Flow us gpm	Boom psi		Spraye 12.5	er Speed 15gpa						10-05 VMD		81-05 <600		10-05 VMD		<600		10-05 VMD		<600		10-05 VMD	#4028 <141		UR110 Class V
	0.35	20	10 drA	8.4	7.0	5.8	5.3	4.2	3.5		248		95%	Ciass	VIVID	\ 1 4 1	\0000	Uldas	VIVID	141	\000	Uldas	VIVID	\1 4 1	<000	#40292
	0.40	25	12	9.4	7.8	6.5	5.9	4.7	3.9	M	237	20%	95%	С	377	7%	89%									
110	0.43	30	13	10	8.6	7.1	6.4	5.1	4.3	M	228		95%	C	355	8%	91%	XC	486	3%	72%	XC	530	2%	63%	
-05	0.47	35	14	11	9.3	7.7	6.9	5.6	4.6	M	220	24%	95%	C	338	10%	93%	XC	464	4%	75%	XC	516	2%	66%	
Nozzles	0.50 0.53	40 45	15 16	12	10	8.8	7.4	5.9 6.3	5.0	F	214 208	26% 27%	95% 95%	C	322 309	11% 12%	93% 94%	VC VC	445 428	5% 5%	78% 80%	XC	503 492	3%	68% 70%	UC 6
	0.56	50	17	13	11	9.2	8.3	6.6	5.5	F	203		95%	C	296	13%	95%		412	6%	82%	XC	482	3%	72%	UC 5
	0.61	60	18	15	12	10	9.1	7.3	6.1	F	194	30%	95%	Č	275	15%	96%	C	386	7%	85%	XC	465	3%	74%	UC 5
	0.64	65	19	15	13	11	10	7.6	6.3	F	190	31%	95%	M	266	16%	96%	С	374	7%	86%	XC	458	4%	75%	UC 5
	0.66	70	20	16	13	11	10	7.9	6.5	F	187	32%		M	257	16%	96%	C	364	7%	87%	VC	451	4%	76%	UC 5
	0.71	80 Poom	21	17 Sprayo	14 or Space	12	11 0" cpa	8.4	7.0		180 10-06		95% 31-06	M CD1	242 10-06	17% #4028	97%	C	344 10-06	#402	88%	VC DP1	438 10-06	4% #402	78%	UC 5
	Flow us gpm	Boom psi	10gpa		r Speed 15gpa		20gpa			Class			<600		VMD		<600				<600					
	0.42	20	13	10	8.4	7.0	6.3	4.2	3.6	C	282	14%	94%	Oldoo	VIVID	X171	\0000	Oldoo	VIVID	X171	\\000	Oluoo	VIVID	X171		#4029
	0.47	25	14	11	9.4	7.8	7.0	4.7	4.0	M	270	16%														
110	0.52	30	15	12	10	8.6	7.7	5.1	4.4	M	261	18%	94%		416	6%	84%									
-06	0.56	35	17	13	11	9.3	8.3	5.6	4.8	M	253	19%	94%	C	392	7%	87%	XC	490	4%	71%	XC	546	2%	61%	UC
Vozzles	0.60	40 45	18 19	14	12	10	8.9	5.9 6.3	5.1 5.4	M	246 240	20%	94% 95%	C	371 353	8% 9%	89% 90%	XC VC	474 461	4% 4%	74% 76%	XC	529 514	2% 3%	66%	UC 6
	0.67	50	20	16	13	11	10	6.6	5.7	M	235	22%	95%	C	337	10%	92%	VC	448	4%	78%	XC	501	3%	68%	UC
	0.73	60	22	17	15	12	11	7.3	6.2	M	225	24%	95%	Č	308	12%	93%	VC	427	5%	81%	XC	478	3%	71%	UC 5
	0.76	65	23	18	15	13	11	7.6	6.5	M	221	25%	95%	С	296	13%	94%	VC	418	5%	82%	XC	468	3%	72%	UC 5
	0.79	70	24	19	16	13	12	7.9	6.7	F	217		95%	С	284	13%	94%	VC	409	5%	83%	XC	459	3%	74%	UC 5
	0.85	80	25	20	17	14	13	8.4	7.2	F	211	27%	95%	M	264	14%	95%		394	6%	85%	VC	442	4%	75%	UC 5
	Flow us gpm	Boom psi	15gpa		r Speed 20gpa						10-08 VMD				VMD				10-08		91-08 <600					UR110 Class V
	0.57	20	11 11	9.3	8.4	6.7	5.6	4.8	4.2		327		91%	Ulass	VIVID	<141	<000	Ulass	VIVID	<u> </u>	<000	Class	VIVID	< 141	<000	#40292
	0.63	25	13	10	9.4	7.5	6.3	5.4	4.7		307		92%													
110	0.69	30	14	11	10	8.2	6.9	5.9	5.1	С	290	17%	93%	XC	453	6%	67%									
-08	0.75	35	15	12	11	8.9	7.4	6.4	5.6	M	276	19%	94%	XC	429	7%	71%			5%	57%		590	3%		
Nozzles	0.80	40 45	16 17	13	12	10	7.9 8.4	7.2	5.9 6.3	M	264 254	21%	95% 95%	XC	408 390	7% 8%	74% 77%	XC	483 464	5% 6%	61% 64%		569 551	4% 4%	47% 49%	UC 6
	0.89	50	18	15	13	11	8.9	7.6	6.6		244	22%	95%	VC	374	9%	79%	XC	446	6%	67%		534	4%	51%	UC
	0.98	60	19	16	15	12	10	8.3	7.3	F	228	23%	96%	C	346	10%	82%	XC	416	7%	70%		506	4%	55%	UC 5
	1.02	65	20	17	15	12	10	8.7	7.6	F	221	24%		С	334	10%	83%	XC	403	7%	72%	UC	493	5%	56%	UC 5
	1.06	70	21	17	16	13	10	9.0	7.9	F	214		97%	C	322	11%	84%	XC	391	7%	73%	UC	482	5%	57%	UC 5
	1.13	80	22	19	17	13	11	10	8.4	F	202		97%	CD1	302	11%	86%	VC	369	8%	76%	XC	461	5%	60%	UC {
	Flow us gpm	Boom psi	15gpa	Spraye 18gpa	er Speed 20gpa	d (on 2	U" spa 30gpa	cing) @ 40gpa	50gpa	Class	10-10 VMD	#402 <141	31-10 <600	Class	10-10 VMD	#4028 <141	<600	MR1	10-10 VMD	#4029 <141	91-10 <600	DR1	10-10 VMD	#4028 <141	86-10 <600	UR110 Class V
	0.71	20	13GPA	12	11	8.4	7.0	5.3	4.2	VC	362	10%		Oldass	VIVID	741	_000	Oldss	VIVID	141	\000	U(100)	AIAID	141	-000	#40292
	0.79	25	16	13	12	9.4	7.8	5.9	4.7	C	341	12%	89%													
110	0.87	30	17	14	13	10	8.6	6.4	5.1	C	325	14%	90%	XC	470	6%	62%									
-10	0.94	35	19	15	14	11	9.3	6.9	5.6		310		91%		445	7%			499					5%	57%	UC 6
Nozzles	1.00	40	20	17	15	12		7.4	5.9	_			92%			- 1-			478						0070	_
	1.06 1.12	45 50	21	18 18	16	13	11	7.9 8.4	6.3	M	287 277		92% 93%		405 388	8% 8%	73% 75%	XC	459 442	5% 6%	64%	IIC	574 565	5% 6%		UC 6
	1.22	60	24	20	18	15	12	9.1	7.3	M	260		94%		358	9%	79%		413	6%	67%	UC		6%		UC 5
	1.27	65	25	21	19	15	13	10	7.6		253		94%		345	10%	80%	XC	400	6%	69%			6%		
	1.32	70	26	22	20	16	13	10	7.9	M	246		94%		333	10%	81%	XC	388	7%	70%		537	6%	46%	UC 5
	1.41	80	28	23	21	17	14	11	8.4	F	234		94%		311	11%			367				525		43%	UC 5
		Boom			er Speed 30gpa						10-125 VMD		1-125 <600		10-125 VMD				10-125 VMD		91-125 <600					
	us gpm 0.99	psi 25	20GPA 15	25GPA 12	10	8.4				XC	421		70%	OldSS	VIVID	<141	<000	OldSS	VIVID	<141	<000	UId55	VIVID	<141	<000	
	1.08	30	16	13	11	9.2	8.0	7.1	6.4	XC	400		74%	UC	501	4%	56%									
		35	17	14	12	10	8.7	7.7		XC			76%			5%	62%	UC	618	4%	39%		647	3%	35%	
110	1.17		19	15	12	11	9.3	8.3	7.4	VC	369	11%	79%	XC	445	5%	66%	UC	593	4%	43%	UC	630	4%	37%	
-125	1.25	40		1 40	13	11	10	8.8	7.9		357		80%		423	6%	70%	UC	571	4%	47%			4%	39%	
-125	1.25 1.33	45	20	16										· VC	100	(20/	72%		552	5%	49%					1
-125	1.25 1.33 1.40	45 50	20 21	17	14	12	10	9.2	8.3		346		82%		403	6%	740/	110						4%		
	1.25 1.33 1.40 1.53	45 50 60	20 21 23	17 18	14 15	12 13	10 11	10	9.1	С	336	12%	83%	XC	386	7%	74%	UC	535	5%	52%	UC	592	4%	42%	
-125	1.25 1.33 1.40	45 50	20 21	17	14	12	10			C C		12% 13%		XC VC			74% 78% 79%	UC			52% 55%	UC UC	592			

COMBO-JET 110° Spray Tips - Standard Sprayer Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

	Flow	Boom		Snrave	r Snee	d (on 2	0" sna	cina) @)	FR1	10-15	#402	81-15	SR1	10-15	#402	87-15	MR1	10-15	#402	91-15	DR1	10-15	#402	86-15
	us gpm	psi	25gpa	30gpa	35 _{GPA}	40gpa	45gpa	50gpa	55gpa	Class	VMD	<141	<600		VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	_
	1.19	25	14	12	10	8.8	7.8	7.0	6.4	XC	416		68%	Oldoo			1000	Oldoo			1000	Oldoo			
	1.30	30	15	13	11	10	8.6	7.7	7.0	XC	398		72%	UC	538	5%	51%								
110	1.40	35	17	14	12	10	9.3	8.3	7.6	XC	383	11%	74%	UC	515	5%	55%	UC	590	4%	43%	UC	641	4%	43%
	1.50	40	18	15	13	11	10	8.9	8.1	VC	370	12%	76%	UC	496	6%	58%	UC	574	4%	45%		624	4%	46%
Nozzles	1.59	45	19	16	14	12	11	10	8.6	VC	358	12%	77%		478	6%		UC	560	5%	47%		610	4%	48%
	1.68	50	20	17	14	12	11	10	9.1	С	348	13%			463	6%	64%	UC	548	5%	49%		597	4%	50%
	1.84	60	22	18	16	14	12	11	10	С	330		81%		436	7%	67%	UC	527	5%	52%		575	4%	53%
	1.91	65	23	19	16	14	13	11	10	C	322		82%		424	7%	69%	UC	517	5%	53%		565	4%	54%
	1.98	70	24	20	17	15	13	12	11	C	315		82%		413	7%	70%	UC	508	5%	54%			4%	55%
	2.12	80	25	21	18	16	14	13	11	С	302		84%			8%	72%			5%	56%	UC	540	5%	58%
		Boom				d (on 2					10-20		81-20						10-20	_	91-20				
	us gpm	psi	30 _{GPA}			45GPA							<600	Class	VMD	<141	<600	Class	VMD	<141	<600				
	1.58	25	16	13	12	10	9.4	8.5	7.8	XC	473	7%	60%												
110	1.73	30	17	15	13	11	10	9.4	8.6	XC	453	8%	64%	LIC	407	CO/	E00/	LIC	E74	E0/	450/	-			
110 -20	1.87 2.00	35	19	16 17	14	12	11	10 11	9.3	XC	437 422	8% 9%	66% 68%	VC	497 479	6% 6%		UC	574 557	5% 5%	45% 48%	-			
Nozzles	2.12	40 45	20	18	15 16	13	12	11	11	XC	410	9%	70%		463	7%	65%	UC	542	5%	50%	-			
IVOZZIES	2.12	50	22	19	17	_		12	11	XC		9%	70%		449	7%	67%	UC	529	6%	52%	-			
	2.45	60	24	21	18	15 16	13 15	13	12	XC	399 379		74%		424	8%	70%	UC	506	6%	55%	1			
	2.55	65	25	22	19	17	15	14	13	VC	379		75%		413	8%	72%		496	6%	56%				
	2.65	70	26	22	20	17	16	14	13	VC	362		76%		403	8%	73%		487	6%	57%	1			
	2.83	80	28	24	21	19	17	15	14	C	348		78%		385	8%	75%		470	7%	59%				
		Boom				d (on 2										#4028		, AO	410	1 70	10070	J			
	us gpm	psi														<141									
	1.98	25	17	15	13	12	11	10	8.4	XC		7%	60%												
	2.17	30	18	16	14	13	12	11	9.2	XC	453	7%	65%					ĺ							
110	2.34	35	20	17	15	14	13	12	10	XC	437	7%	68%	UC	484	6%	59%]							
-25	2.50	40	21	19	17	15	14	12	11	XC	422	7%	71%	XC	468	6%	62%								
Nozzles	2.65	45	23	20	18	16	14	13	11	XC	410	8%	73%		453	7%	64%								
	2.80	50	24	21	18	17	15	14	12	XC	399	8%	74%		441	7%	66%	ļ							
	3.06	60	26	23	20	18	17	15	13	XC	380	8%	77%		419	8%	69%	ļ							
	3.19	65	27	24	21	19	17	16	14	VC	371	8%	78%	XC	409	8%	70%	ļ							
	3.31	70	28	25	22	20	18	16	14	VC	364	8%	79%		400	8%	71%	ļ							
	3.54	80	30	26	23	21	19	18	15	C	350	8%	81%	XC	384	8%	73%	J							
		Boom				d (on 2						#402													
	us gpm	psi				70gpa					VMD	<141													
	2.37	25	18	14	12	10	8.8	7.8			484	6%	58%												
110	2.60	30	19	15	13	11	10	8.6	7.7	XC	466	6%	61%												
110	2.81	35	21	17	14	12	10	9.3	8.3	XC	451	7%	63%												
-30 Nozzles	3.00 3.18	40	22	18 19	15 16	13	11	10 11	8.9 10	XC	437 425	7% 8%	65% 67%												
NUZZIES	3.18	45	25	20	17	14	12	11	10	XC	415	8%	68%	-											
	3.35	50 60	25	22	18	14 16	14	12	11	XC	396	9%	70%	-											
	3.82	65	28	23	19	16	14	13	11	XC	388	9%	71%												
	3.97	70	29	24	20	17	15	13	12	XC		9%	72%												
	ა.ყ/	70	23	24	20	17	10	10	12	ΛU	301	970	1270	1											

LERAP Drift Reduction Star Rating for COMBO-JET 110° Spray Nozzles [For UK applicators]

Local Environmental Risk Assessments for Pesticides (LERAP) certification is completed in the UK to provide applications a means to qualify a local drift reduction assessment based on the nozzles used for an application.

Stay tuned for further LERAP nozzle testing for more nozzles LERAP RATING Pressure Range 1.0 - 1.5 BAR 1.0 - 1.5 BAR 90% 1.0 - 1.5 BAR

The 4-star LERAP rating is a new rating that illustrates the highest classification for drift reduction within the standard certification. (List updated January 2021)

5.	LERAP RATING	Nozzle	Pressure Range
		DR110-025	1.0 - 2.5 BAR
1		DR110-03	1.6 - 3.0 BAR
1		DR110-04	1.0 - 5.0 BAR
1	***	DR110-05	1.6 - 5.0 BAR
1	75%	DR110-06	3.1 - 5.0 BAR
1	Drift Reduction	MR110-04	1.0 - 2.5 BAR
_	Dint neudonon	MR110-05	1.6 - 5.0 BAR
		MR110-06	1.6 - 5.0 BAR
		SR110-05	10-15 BAR

LERAP RATING	Nozzle	Pressure Range
	DR110-025	2.6 - 3.5 BAR
**	DR110-03	3.1 - 5.0 BAR
50%	MR110-04	2.6 - 3.5 BAR
Drift Reduction	SR110-05	1.6 - 3.0 BAR
	•	

More information on LERAP certification, process, and the most up to date listing of approved nozzles and

their ratings, is available from the Health and Safety Executive (HSE), also available online @

For the updated list on COMBO-JET

nozzles, visit www.wilger.net/LERAP

COMBO-JET 80° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE S572.1 Standard)
Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.) can vary between testing equipment and method, and is provided as an educational resource only.

Tips sized up to 110-06 verified on Phase Doppier Particle Analyzer (PDPA); tips sized over 110-06 verified on Malwern.

Fine (F)

VMD (Volume Median Diameter) The median droplet (in μ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141µ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially.

% <600µ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage. As % of useful droplets lowers overall coverage is reduced.

Duty Cycle (Effective 'on time' of solenoid)

The duty cycle is the effective on time of a PWM solenoid. Generally speed ranges are based on a 25% - 100% duty cycle. When selecting a nozzle, often a duty cycle of 60-80% is recommended at typical speeds, providing flexibility for upper speed & turning situations, as well as slower spraying speeds. It is not advised to spray below 40% duty cycle.

Calculating Duty Cycle on Printed Charts (Useful for nozzle sizing & selection) On Wilger printed charts, typically a SPEED RANGE is provided, but the duty cycle % is a dynamic factor based on the sprayers travel speed. To calculate a duty cycle at a given travel speed, divide CURRENT sprayer speed into max nozzle speed. (e.g. 15mph / 20mph max = 75% duty cycle)

Nozzle	Flow	Boom	Tip	Applic	ation Rate in		/ Acre		Spray	Classi	fication	ı; VMI	D (Drop	olet Siz	e in μ);	%<1	41μ (D	rift %)	; %<60)0μ (S	Small D	roplets)
Size & Angle	Rate USGPM	PSI	psi			zle Spacing				° Series				Series		01		° Serie				Series	
Aligie		Daam	Ti		prayer Spee				VMD														
	Flow us gpm	Boom psi	Tip psi	Spra 2gpa	yer Speed (o 3gpa	11 20 Spacii 4gpa			80-005 S VMD												VMD		
	0.035	20	20	1.3-5.3	0.9-3.5	0.7-2.6	0.5-2.1	F	167			Cidoo	VIVID	(141	\000	Uldas	VIVID	141	\ 000	Oldac	VIVID	(141	
	0.040	25	25	1.5-5.9	1-3.9	0.7-2.9	0.6-2.3	F	157		100%					M	261	11%	99%	С	311	6%	10
80	0.043	30	30	1.6-6.4	1.1-4.3	0.8-3.2	0.7-2.6	F	149	46%	100%					M	236	17%	98%		276	11%	
-005	0.047	35	35	1.7-6.9	1.2-4.6	0.9-3.5	0.7-2.8	F	142	51%	100%					M	217	22%	97%	M	250		
Nozzles	0.050	40	40	1.9-7.4	1.3-5	0.9-3.7	0.8-3	F	137	55%	100%					F	201	26%	96%	M	230		
	0.053	45	45	2-7.9	1.3-5.3	1-3.9	0.8-3.2	F	132	59%	100%					F	189	30%		F	213	23%	
	0.056	50	50	2.1-8.3	1.4-5.5	1.1-4.2	0.8-3.3	늗	128	63%	100%					<u> </u>	178	33%	94%	는	200	25%	
	0.061	60 65	60 65	2.3-9.1 2.4-9.5	1.5-6.1 1.6-6.3	1.1-4.5 1.2-4.7	0.9-3.6 1-3.8	E	121 118	68% 71%	100% 100%					Ę	161 154	39% 41%	93%	Ę	178 169		
	0.066	70	70	2.5-9.8	1.6-6.5	1.2-4.7	1-3.0	÷	116	73%	100%					÷	148	44%		Ė	161	35%	
	0.000	80	80	2.8-11	1.8-7	1.3-5.3	1.1-4.2	Ė	111		100%					F	138	48%		Ė	148	38%	
	Flow	Boom	Tip		ver Speed (o			ER8	0-0067			SR80	0-0067	#4028	3-0067	MR80	0-0067		0-0067		0-0067	#40280	
	us gpm	psi	psi	2 _{GPA}	3 _{GPA}	4gpa	5 _{GPA}	Class		<141	<600			<141		Class	VMD	<141	<600			<141	<
	0.047	20	20	1.8-7	1.2-4.7	0.9-3.5	0.7-2.8	F	199	21%	100%												
	0.053	25	25	2-7.9	1.3-5.2	1-3.9	0.8-3.1	F	183	29%	100%					M	231	18%	99%	C	337		10
80	0.058	30	30	2.2-8.6	1.4-5.7	1.1-4.3	0.9-3.4	F	171	35%	100%					F	211	24%	98%		308		10
-0067	0.063	35 40	35 40	2.3-9.3	1.6-6.2	1.2-4.7	0.9-3.7 1-4	F	161	40%	100%					F	195 182	29%	97%		285 267	11%	
Nozzles	0.067	45	45	2.5-9.9 2.8-11	1.7-6.6 1.8-7	1.3-5 1.3-5.3	1.1-4.2	F	153 147	45% 49%	100% 100%					F	171	33%	96%	M	252	13% 15%	
	0.071	50	50	2.8-11	1.9-7.4	1.4-5.6	1.1-4.2	F	141	52%	100%					F	162	40%	94%		239		
	0.082	60	60	3-12	2-8.1	1.5-6.1	1.2-4.9	F	131	58%	100%					F	148	46%	93%		218		
	0.085	65	65	3.3-13	2.1-8.5	1.6-6.3	1.3-5.1	F	128	61%	100%					F	142	49%		F	210	21%	
	0.089	70	70	3.3-13	2.2-8.8	1.7-6.6	1.3-5.3	F	124	63%	100%					F	136	51%	91%	F	202	22%	10
	0.095	80	80	3.5-14	2.4-9.4	1.8-7	1.4-5.6	F	118		100%					F	127	55%		F	189		
	Flow	Boom	Tip		yer Speed (o			ER	80-01	#4027		SR8	30-01	#4028		MR	30-01		90-01	DR	80-01	#4028	
	us gpm	psi	psi	2GPA	3GPA	4GPA	5GPA	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<
	0.07	20 25	20 25	2.5-10 3-12	1.8-7 2-7.8	1.3-5.2 1.5-5.9	1.1-4.2 1.2-4.7	Ė	176 165	28% 35%	100% 100%		293 259	8% 15%	97% 97%								H
80	0.08	30	30	3.3-13	2.2-8.6	1.6-6.4	1.3-5.1	F	156	41%	100%		234	20%	97%	М	219	23%	97%	С	312	10%	9,
-01	0.09	35	35	3.5-14	2.3-9.2	1.7-6.9	1.4-5.5	Ė	149	45%	100%		215	25%	97%	F	204	27%			292	12%	9
Nozzles	0.10	40	40	3.8-15	2.5-9.9	1.9-7.4	1.5-5.9	F	144	49%	100%		199	29%	97%	F	192	30%	97%		275	14%	9
	0.11	45	45	4-16	2.5-10	2-7.9	1.6-6.3	F	139	53%	100%	F	187	33%	97%	F	182	33%	97%	M	261	15%	9
	0.11	50	50	4.3-17	2.8-11	2.1-8.3	1.7-6.6	F	135	56%	100%		176	36%	98%	F	173	36%	97%	M	249	17%	9
	0.12	60	60	4.5-18	3-12	2.3-9.1	1.8-7.3	F	128	61%	100%	F	159	41%	98%	F	159	40%			230	19%	
	0.13	65	65	4.8-19	3.3-13	2.4-9.4	1.9-7.6	ᆫ	125	64%	100%	F	152	44%	98%	<u> </u>	153	42%	97%	M	221	20%	
	0.13	70 80	70 80	5-20 5.3-21	3.3-13	2.5-9.8	2-7.8	F	122 117	66% 70%	100%		146	46% 50%	98%	F	148 139	44%	97%	F	214	21%	
	0.14 Flow	Boom	Tip		3.5-14 yer Speed (o	2.5-10 n 20" spacin	2.1-8.4			#4027	100% 0-015		135 0-015		98% 8-015	MR8			97%	DRS	0-015		10 20-
	us gpm	psi	psi	3gpa	4GPA	5GPA	ig) ⊚ 6gpa		VMD	<141	<600				<600							<141	
	0.11	20	20	2.5-10	2-7.8	1.6-6.3	1.3-5.2	F	200	21%	100%	Oldoo	VIVID		1000	Oldoo	VIVID		1000	Oldoc	VIVID	1111	ì
	0.12	25	25	3-12	2.2-8.8	1.8-7	1.5-5.8	F	189	25%	100%	С	287	12%	94%								Г
80	0.13	30	30	3.3-13	2.4-9.6	1.9-7.7	1.6-6.4	F	180	29%	100%	M	264	16%	95%	С	324	10%	94%	VC	419	4%	8
-015	0.14	35	35	3.5-14	2.5-10	2.1-8.3	1.7-6.9	F	173	32%	100%		245	19%	96%	С	302	12%	95%	VC	398	5%	8
Nozzles	0.15	40	40	3.8-15	2.8-11	2.2-8.9	1.9-7.4	F	167	34%	100%		231	22%	96%	С	285	14%	96%	C	381	6%	9
	0.16	45	45	4-16	3-12	2.4-9.4	2-7.8	F	162	37%	100%		219	24%	97%	M	270	16%	97%	C	367	6%	9
	0.17 0.18	50 60	50 59	4.3-17 4.5-18	3-12 3.5-14	2.5-9.9 2.8-11	2.1-8.3 2.3-9.1	F	158 151	39% 42%	100% 100%		208 191	26% 30%	97% 97%	M	257 237	17% 19%	97%	C	354 333	7% 8%	9
	0.18	65	64	4.8-19	3.5-14	2.8-11	2.3-9.1	F	148	44%	100%		184	31%	97%	M	228	21%	98%	C	325	8%	9
	0.19	70	69	5-20	3.8-15	3-12	2.5-9.8	F	145	45%	100%	F	178	33%	98%	M	221	22%	99%	C	317	9%	9
	0.21	80	79	5.3-21	4-16	3.3-13	2.5-10	F	140	48%	100%	F	168	35%	98%	F	208	23%	99%	Č	303	10%	
	Flow	Boom	Tip		yer Speed (o			ER	80-02	#4027	70-02	SR8	0-02	#4028	38-02		30-02	#402	90-02		80-02	#4028	80
	us gpm	psi	psi	3 _{GPA}	4 _{GPA}	5 _{GPA}	6GPA	Class	VMD	<141	<600		VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<
	0.14	20	20	3.5-14	2.5-10	2.1-8.3	1.7-6.9	F	185		100%		0==	1001	0.407					_			\vdash
00	0.16	25	25	4-16	3-12	2.3-9.3	2-7.8	F	177		100%			12%		C -	220	00/	0.40/	VC	AEC	20/	0
80	0.17	30	29	4.3-17	3.3-13	2.5-10	2.1-8.5	F	171		100%		258	15%	95%		328	10%	94%		456	3%	8
-02 Nozzles	0.19 0.20	35 40	34 39	4.5-18 5-20	3.5-14 3.8-15	2.8-11 3-12	2.3-9.2 2.5-9.8	F	166 162		100% 100%		245 235	18% 20%	96% 96%		312 299	10% 11%			437 421	4% 4%	
1022103	0.20	45	44	5.3-21	4-16	3-12	2.5-9.6	F	158					22%	97%		288	12%			408	5%	
	0.22	50	49	5.5-22	4-16	3.3-13	2.8-11	F	155		100%		217	24%	97%		279	13%			396	5%	
	0.24	60	59	6-24	4.5-18	3.5-14	3-12	F	150		100%		204	27%	98%	M	263	15%			376	6%	
	0.25	65	64	6.3-25	4.8-19	3.8-15	3.3-13	F	148		100%		199	28%	98%	M	257	16%			368	6%	
										1 4-0/							054	1 4 70/	1050/	0		70/	
	0.26	70 80	69 79	6.5-26 7-28	4.8-19 5.3-21	4-16 4.3-17	3.3-13 3.5-14	F	146 142		100% 100%		194	29% 32%	98% 98%		251 240		95% 95%		361 347	7% 7%	

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. 'Shown application information is based on water @ 80°F in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 80° Spray Tips - PWM Spray Systems

ASABE Spray Classification (ASABE S572.1 Standard)

Spray quality is categorized based on Dv0.1 and VMD droplet sizes.

Objective testing data (by, 3rd party, from spray spectrum recording equipment (without wind tunner Coarse (C) use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.) can vary hetween testing equipment and method, and is provided as an educational resource only.

Living the strength of the s

VMD (Volume Median Diameter) The median droplet (in µ) for a sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141µ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially.

% <600µ (% of Small Droplets) % of volume which is made up of small' droplets, useful for coverage As % of useful droplets lowers. overall coverage is reduced.

Duty Cycle (Effective 'on time' of solenoid)

The duty cycle is the effective 'on time' of a PWM solenoid. Generally speed ranges are based on a 25% - 100% duty cycle. When selecting a nozzle, often a duty cycle of 60-80% is recommended at typical speeds, providing flexibility for upper speed & turning situations, as well as slower spraying speeds. It is not advised to spray below 40% duty cycle.

Calculating Duty Cycle on Printed Charts (Useful for nozzle sizing & selection) On Wilger printed charts, typically a SPEED RANGE is provided, but the duty cycle % is a dynamic factor based on the sprayers travel speed. To calculate a duty cycle at a given travel speed, divide CURRENT sprayer speed into max nozzle speed. (e.g. 15mph / 20mph max = 75% duty cycle)

									y cycle.					ea mio									
	Flow	Boom	Tip	Snra	yer Speed (o	n 20" snacin	iu) @	FR8	0-025	#4027	0-025	SR8	0-025	#4028	8-025	MR8	0-025	#4029	0-025	DR8	0-025	#4028	80-025
	us gpm		psi	3gpa	4GPA	5gpa	6gpa	Class			<600				<600		VMD	<141				<141	
	0.17	20	19	4.3-17	3.3-13	2.5-10	2.2-8.6	M	234	17%		Oldoo	VIVID	V 1 T 1	~000	Oldoo	VIVID	V1-T1	~000	Olass	VIVID	\ T	\ 000
	0.20	25	24	4.8-19	3.5-14	3-12	2.4-9.7	M	220		100%	С	318	9%	91%								
00								F								VC	420	40/	000/	VC	460	20/	770/
80	0.21	30	29	5.3-21	4-16	3.3-13	2.8-11		210		100%	C	299	11%	92%	VC	429	4%	80%		463	3%	77%
-025	0.23	35	34	5.8-23	4.3-17	3.5-14	2.8-11	F	202		100%	С	283	13%	93%	VC	405	5%	83%	VC	446	4%	79%
Nozzles	0.25	40	39	6-24	4.5-18	3.8-15	3-12	F	195		100%		270	15%	94%	C	386	6%	84%	VC	432	4%	80%
	0.26	45	44	6.5-26	4.8-19	4-16	3.3-13	F	189		100%	M	260	16%	95%	С	370	7%	86%	VC	420	5%	82%
	0.28	50	49	6.8-27	5-20	4-16	3.5-14	F	184		100%	M	250	18%	95%	С	356	8%	87%	VC	410	5%	83%
	0.30	60	58	7.5-30	5.5-22	4.5-18	3.8-15	F	175	34%	100%	M	235	20%	96%	С	333	9%	88%	С	393	6%	84%
	0.31	65	63	7.8-31	5.8-23	4.8-19	4-16	F	171		100%	M	228	21%	96%	С	324	9%	89%	С	386	6%	85%
	0.33	70	68	8-32	6-24	4.8-19	4-16	F	168		100%	M	223	22%	97%	Č	315	10%	90%	Č	379	7%	86%
	0.35	80	78	8.8-35	6.5-26	5.3-21	4.3-17	F	162	38%		F	213	24%		Č	300		91%	Č	367	7%	87%
	Flow	Boom	Tip		yer Speed (o				0-03		70-03		80-03		88-03				90-03		30-03	#4028	
	us gpm		psi	4gpa	5GPA	6.0gpa	8gpa		VMD				VMD		<600								
	0.21	20	19	3.8-15	3-12	2.5-10	1.9-7.7	M	235	17%	99%	Uldaa	VIVID	\141	\000	Uldaa	VIVID	\141	\000	Ulass	VIVID	\141	\000
												0	070	70/	000/								
	0.23	25	24	4.3-17	3.5-14	3-12	2.2-8.6	M	224	20%		C	373	7%	88%	1/0	40=	40/	000/		405	00/	7401
80	0.26	30	29	4.8-19	3.8-15	3.3-13	2.4-9.5	F	215	22%	99%	C	349	9%	89%			4%	80%		485	3%	71%
-03	0.28	35	34	5-20	4-16	3.5-14	2.5-10	F	208	24%	99%	С	330	11%	90%	VC	414	5%	83%		466	3%	74%
Nozzles	0.29	40	39	5.5-22	4.3-17	3.8-15	2.8-11	F	203	26%	99%	С	314	12%	91%	VC	395	6%	85%	VC	451	4%	76%
	0.31	45	43	5.8-23	4.8-19	3.8-15	3-12	F	198	27%	99%	С	300	13%	91%	С	378	7%	86%	VC	437	5%	78%
	0.33	50	48	6-24	5-20	4-16	3-12	F	193	29%	99%	С	289	14%	92%	С	364	8%	87%	VC	426	5%	80%
	0.36	60	58	6.8-27	5.3-21	4.5-18	3.3-13	F	186		99%	M	270	16%	93%	Č	341	9%	89%	VC	406	6%	82%
	0.38	65	63	7-28	5.5-22	4.8-19	3.5-14	F	183	32%	99%	M	262	17%	93%	Č	332	10%	90%	C	398	6%	83%
	0.39	70	68	7.3-29	5.8-23	4.8-19	3.5-14	F				M	255	18%	93%	C	323		90%	Č	391	7%	
	0.39	80	77	7.8-31	6.3-25	5.3-21	3.8-15	F	175	35%		M	242	10%	94%	C	308		91%	C	378		85%
		Boom	Tip		yer Speed (o				80-04		70-04		80-04		88-04	MRS	30-04	#4029			376	#4028	
	us gpm		psi	4gpa	yer Speed (o 5gpa	7.5	10gpa		VMD	<141			VMD		<600		VMD		<600			<141	
	us gpiii 0.27	20	19	5-20	4-16	2.8-11	2-8.1	M	254	16%		ciass	VIVID	C141	<000	Olass	VIVID	<141	\000	ciass	AIMD	<14T	<000
											99%	0	077	F0/	050/								
	0.31	25	23	5.8-23	4.5-18	3-12	2.3-9.1	M	242	18%	99%	C	377	5%	85%								
80	0.34	30	28	6.3-25	5-20	3.3-13	2.5-10	M	233	20%	99%	C	356	6%	86%	VC	428	5%	79%	XC	551	2%	60%
-04	0.36	35	33	6.8-27	5.5-22	3.5-14	2.8-11	M	226	22%	99%	С	339	8%	88%	VC	409	6%	81%	XC	531	2%	64%
Nozzles	0.39	40	37	7.3-29	5.8-23	3.8-15	3-12	M	219	23%	99%	С	323	9%	89%	С	393	7%	83%	XC	515	3%	67%
	0.41	45	42	7.5-30	6-24	4-16	3-12	F	214	24%	99%	С	310	10%	90%	С	379	8%	84%	XC	500	3%	69%
	0.43	50	47	8-32	6.5-26	4.3-17	3.3-13	F	209	25%	99%	С	298	11%	90%	С	367	8%	86%	XC	488	3%	71%
	0.47	60	56	8.8-35	7-28	4.8-19	3.5-14	F	201	27%	99%	Č	277	13%	91%	Č	348	10%	87%	XC	467	4%	74%
	0.49	65	61	9.3-37	7.3-29	5-20	3.8-15	F	198	28%		M	268	14%	92%	Č	340	10%	88%	XC	458	4%	75%
	0.43	70	66	9.5-38	7.5-30	5-20		F	195	29%		M	260	14%	92%	C	332	11%	89%	VC	450	5%	76%
							3.8-15	F															
	0.55	80	75	10-41	8.3-33	5.5-22	4-16		189	30%		M	245	16%		C	319			VC	436	5%	78%
	Flow	Boom	Tip		yer Speed (o				30-05	#402			80-05		88-05		30-05				80-05	#4028	
																							 < bU
	us gpm		psi	6GPA	8gpa	10gpa	12gpa			<141		Uidss	VIVID	<141	<000	Class	VIVID	<141	<600	Class	VIVID	<u> </u>	
	0.34	20	18	4.3-17	3-12	2.5-10	2.1-8.3	С	303	10%	95%					Class	VIVID	<141	<600	Class	VIVID	\141	
	0.34 0.38	20 25	18 23	4.3-17 4.8-19	3-12 3.5-14	2.5-10 2.8-11	2.1-8.3 2.3-9.3	C	303 287	10% 13%	95% 95%	VC	424	4%	80%								
80	0.34 0.38 0.41	20 25 30	18 23 27	4.3-17 4.8-19 5-20	3-12 3.5-14 3.8-15	2.5-10 2.8-11 3-12	2.1-8.3 2.3-9.3 2.5-10	C C	303 287 274	10% 13% 15%	95% 95% 95%	VC VC	424 400	4% 6%	80% 82%	XC	517	3%	65%	XC	587	1%	53%
80 -05	0.34 0.38	20 25	18 23	4.3-17 4.8-19	3-12 3.5-14	2.5-10 2.8-11	2.1-8.3 2.3-9.3	C	303 287	10% 13%	95% 95% 95% 95%	VC VC C	424	4%	80%							1% 2%	
	0.34 0.38 0.41	20 25 30	18 23 27	4.3-17 4.8-19 5-20	3-12 3.5-14 3.8-15	2.5-10 2.8-11 3-12	2.1-8.3 2.3-9.3 2.5-10	C C	303 287 274	10% 13% 15%	95% 95% 95% 95%	VC VC C	424 400	4% 6%	80% 82%	XC XC	517	3%	65%	XC	587	1%	53%
-05	0.34 0.38 0.41 0.45	20 25 30 35	18 23 27 32	4.3-17 4.8-19 5-20 5.5-22 6-24	3-12 3.5-14 3.8-15 4.3-17 4.5-18	2.5-10 2.8-11 3-12 3.3-13 3.5-14	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12	C C C	303 287 274 263	10% 13% 15% 17% 19%	95% 95% 95% 95% 95%	VC VC C	424 400 380 362	4% 6% 8% 9%	80% 82% 83% 85%	XC XC XC	517 496 478	3% 3% 4%	65% 69% 71%	XC XC XC	587 567 551	1% 2% 2%	53% 57% 60%
-05	0.34 0.38 0.41 0.45 0.48 0.50	20 25 30 35 40 45	18 23 27 32 36 41	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12	C C M M	303 287 274 263 255 247	10% 13% 15% 17% 19% 20%	95% 95% 95% 95% 95%	VC VC C C	424 400 380 362 347	4% 6% 8% 9% 10%	80% 82% 83% 85% 86%	XC XC XC VC	517 496 478 463	3% 3% 4% 4%	65% 69% 71% 74%	XC XC XC XC	587 567 551 536	1% 2% 2% 2%	53% 57% 60% 63%
-05	0.34 0.38 0.41 0.45 0.48 0.50 0.53	20 25 30 35 40 45 50	18 23 27 32 36 41 45	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13	C C M M M	303 287 274 263 255 247 241	10% 13% 15% 17% 19% 20% 21%	95% 95% 95% 95% 95% 95%	VC VC C C C	424 400 380 362 347 333	4% 6% 8% 9% 10% 11%	80% 82% 83% 85% 86% 87%	XC XC XC VC VC	517 496 478 463 450	3% 3% 4% 4% 5%	65% 69% 71% 74% 75%	XC XC XC XC XC	587 567 551 536 524	1% 2% 2% 2% 3%	53% 57% 60% 63% 65%
-05	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.58	20 25 30 35 40 45 50 60	18 23 27 32 36 41 45 54	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14	C C M M M M	303 287 274 263 255 247 241 230	10% 13% 15% 17% 19% 20% 21% 23%	95% 95% 95% 95% 95% 95% 95%	VC VC C C C C	424 400 380 362 347 333 309	4% 6% 8% 9% 10% 11%	80% 82% 83% 85% 86% 87% 88%	XC XC XC VC VC	517 496 478 463 450 428	3% 3% 4% 4% 5% 5%	65% 69% 71% 74% 75% 78%	XC XC XC XC XC	587 567 551 536 524 503	1% 2% 2% 2% 3% 3%	53% 57% 60% 63% 65% 68%
-05	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.58 0.61	20 25 30 35 40 45 50 60 65	18 23 27 32 36 41 45 54 59	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15	C C M M M M	303 287 274 263 255 247 241 230 225	10% 13% 15% 17% 19% 20% 21% 23% 24%	95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C	424 400 380 362 347 333 309 299	4% 6% 8% 9% 10% 11% 13%	80% 82% 83% 85% 86% 87% 88% 88%	XC XC XC VC VC VC	517 496 478 463 450 428 419	3% 3% 4% 4% 5% 5% 6%	65% 69% 71% 74% 75% 78% 79%	XC XC XC XC XC XC	587 567 551 536 524 503 494	1% 2% 2% 2% 3% 3% 3%	53% 57% 60% 63% 65% 68% 69%
-05	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.58 0.61 0.63	20 25 30 35 40 45 50 60 65 70	18 23 27 32 36 41 45 54 59 63	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15 4-16	C C C M M M M	303 287 274 263 255 247 241 230 225 221	10% 13% 15% 17% 19% 20% 21% 23% 24% 25%	95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C	424 400 380 362 347 333 309 299 289	4% 6% 8% 9% 10% 11% 13% 13%	80% 82% 83% 85% 86% 87% 88% 89%	XC XC XC VC VC VC VC	517 496 478 463 450 428 419 410	3% 3% 4% 4% 5% 5% 6%	65% 69% 71% 74% 75% 78% 79% 80%	XC XC XC XC XC XC XC XC	587 567 551 536 524 503 494 486	1% 2% 2% 2% 3% 3% 3% 4%	53% 57% 60% 63% 65% 68% 69% 71%
-05	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.58 0.61 0.63	20 25 30 35 40 45 50 60 65 70	18 23 27 32 36 41 45 54 59 63 72	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 6.3-25	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17	C C C M M M M M	303 287 274 263 255 247 241 230 225 221 214	10% 13% 15% 17% 20% 21% 23% 24% 25% 27%	95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C	424 400 380 362 347 333 309 299 289 271	4% 6% 8% 9% 10% 11% 13% 13% 14%	80% 82% 83% 85% 86% 87% 88% 89% 89%	XC XC XC VC VC VC C C	517 496 478 463 450 428 419 410 396	3% 3% 4% 4% 5% 5% 6% 6% 7%	65% 69% 71% 74% 75% 78% 79% 80% 82%	XC XC XC XC XC XC XC XC XC	587 567 551 536 524 503 494 486 471	1% 2% 2% 2% 3% 3% 3% 4% 4%	53% 57% 60% 63% 65% 68% 69% 71% 73%
-05	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.58 0.61 0.63 0.67 Flow	20 25 30 35 40 45 50 60 65 70 80	18 23 27 32 36 41 45 54 59 63 72 Tip	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 6.3-25 yer Speed (0	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17	C C M M M M M M M	303 287 274 263 255 247 241 230 225 221 214 80-06	10% 13% 15% 17% 19% 20% 21% 23% 24% 25% 27% #402	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C	424 400 380 362 347 333 309 299 289 271 30-06	4% 6% 8% 9% 10% 11% 13% 14% 15% #402	80% 82% 83% 85% 86% 87% 88% 89% 90% 88-06	XC XC XC VC VC VC C C	517 496 478 463 450 428 419 410 396 30-06	3% 4% 4% 5% 5% 6% 6% 7% #4029	65% 69% 71% 74% 75% 78% 79% 80% 82% 90-06	XC XC XC XC XC XC XC XC XC	587 567 551 536 524 503 494 486 471 80-06	1% 2% 2% 2% 3% 3% 3% 4% 4%	53% 57% 60% 63% 65% 68% 69% 71% 73% 80-06
-05	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.58 0.61 0.63 0.67 Flow us gpm	20 25 30 35 40 45 50 60 65 70 80 Boom psi	18 23 27 32 36 41 45 54 59 63 72 Tip psi	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 6.3-25 yer Speed (0	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12gpa	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 g) @	C C M M M M M M M ER8	303 287 274 263 255 247 241 230 225 221 214 80-06 VMD	10% 13% 15% 17% 19% 20% 21% 23% 24% 25% 27% #402 <141	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C	424 400 380 362 347 333 309 299 289 271	4% 6% 8% 9% 10% 11% 13% 14% 15% #402	80% 82% 83% 85% 86% 87% 88% 89% 89%	XC XC XC VC VC VC C C	517 496 478 463 450 428 419 410 396 30-06	3% 3% 4% 4% 5% 5% 6% 6% 7%	65% 69% 71% 74% 75% 78% 79% 80% 82% 90-06	XC XC XC XC XC XC XC XC XC	587 567 551 536 524 503 494 486 471 80-06	1% 2% 2% 2% 3% 3% 3% 4% 4%	53% 57% 60% 63% 65% 68% 69% 71% 73% 80-06
-05	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.58 0.61 0.63 0.67 Flow us gpm 0.40	20 25 30 35 40 45 50 60 65 70 80 Boom psi 20	18 23 27 32 36 41 45 54 59 63 72 Tip psi 17	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6.3-25 yer Speed (0 10gpa 3-12	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12gpa 2.5-9.8	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 (g) @ 15GPA 2-7.8	C C C M M M M M M F ER8	303 287 274 263 255 247 241 230 225 221 214 80-06 VMD 331	10% 13% 15% 17% 19% 20% 21% 23% 24% 25% 27% #402 <141 11%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C	424 400 380 362 347 333 309 299 289 271 80-06 VMD	4% 6% 8% 9% 10% 11% 13% 14% 15% #402 <141	80% 82% 83% 85% 86% 87% 88% 89% 90% 88-06 <600	XC XC XC VC VC VC C C	517 496 478 463 450 428 419 410 396 30-06	3% 4% 4% 5% 5% 6% 6% 7% #4029	65% 69% 71% 74% 75% 78% 79% 80% 82% 90-06	XC XC XC XC XC XC XC XC XC	587 567 551 536 524 503 494 486 471 80-06	1% 2% 2% 2% 3% 3% 3% 4% 4%	53% 57% 60% 63% 65% 68% 69% 71% 73% 80-06
-05 Nozzles	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.61 0.63 0.67 Flow us gpm 0.40 0.44	20 25 30 35 40 45 50 60 65 70 80 Boom psi 20	18 23 27 32 36 41 45 54 59 63 72 Tip psi 17 22	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6.3-25 yer Speed (o 10gPA 3-12 3.3-13	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12GPA 2.5-9.8 2.8-11	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 g) @ 15gpa 2-7.8 2.2-8.8	C C C M M M M M M F ER8 Class C	303 287 274 263 255 247 241 230 225 221 214 80-06 VMD 331 316	10% 13% 15% 17% 19% 20% 21% 23% 24% 25% 27% #402 <141 11% 13%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C	424 400 380 362 347 333 309 299 289 271 80-06 VMD	4% 6% 8% 9% 10% 11% 13% 13% 14% 15% #402 <141	80% 82% 83% 85% 86% 87% 88% 89% 90% 88-06 <600	XC XC VC VC VC C C C MR8	517 496 478 463 450 428 419 410 396 80-06 VMD	3% 3% 4% 4% 5% 5% 6% 7% #4029 <141	65% 69% 71% 74% 75% 78% 80% 82% 90-06 <600	XC XC XC XC XC XC XC XC Class	587 567 551 536 524 503 494 486 471 80-06 VMD	1% 2% 2% 2% 3% 3% 4% 4% 44% 44028 <141	53% 57% 60% 63% 65% 68% 71% 73% 80-06
-05 Nozzles	0.34 0.38 0.41 0.45 0.45 0.50 0.53 0.61 0.63 0.67 Flow us gpm 0.40 0.44 0.48	20 25 30 35 40 45 50 60 65 70 80 Boom psi 20 25 30	18 23 27 32 36 41 45 54 59 63 72 Tip psi 17 22 26	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 6.3-25 yer Speed (o 10gPA 3-12 3.3-13 3.5-14	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12gPA 2.5-9.8 2.8-11 3-12	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 g) @ 15gPA 2-7.8 2-7.8 2.4-9.6	C C C M M M M M M M F ER8 Class C C C C	303 287 274 263 255 247 241 230 225 221 214 30-06 VMD 331 316 305	10% 13% 15% 17% 19% 20% 21% 23% 24% 25% 27% #402 <141 11% 13% 15%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C SR8 Class	424 400 380 362 347 333 309 299 289 271 80-06 VMD 456 435	4% 6% 8% 9% 10% 11% 13% 14% 15% #402 <141	80% 82% 83% 85% 86% 87% 88% 89% 90% 88-06 <600	XC XC VC VC VC C C C MR8 Class	517 496 478 463 450 428 419 410 396 80-06 VMD	3% 3% 4% 4% 5% 5% 6% 6% 7% #4029 <141	65% 69% 71% 74% 75% 78% 80% 82% 90-06 <600	XC XC XC XC XC XC XC XC XC XC XC XC	587 567 551 536 524 503 494 486 471 80-06 VMD	1% 2% 2% 2% 3% 3% 3% 4% 4% #4028 <141	53% 57% 60% 63% 65% 68% 71% 73% 80-06
-05 Nozzles 80 -06	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.61 0.63 0.67 Flow us gpm 0.40 0.44 0.48 0.52	20 25 30 35 40 45 50 60 65 70 80 Boom psi 20 25 30 35	18 23 27 32 36 41 45 54 59 63 72 Tip psi 17 22 26 30	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Sprat 7.5 4-16 4.5-18 4.8-19 5.3-21	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 6.3-25 yer Speed (0 10gpa 3-12 3.3-13 3.5-14 4-16	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12 _{GPA} 2.5-9.8 2.8-11 3-12	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.5-14 3.8-15 4-16 4.3-17 9) @ 15 _{GPA} 2-7.8 2.2-8.8 2.4-9.6 2.5-10	C C C C C C C	303 287 274 263 255 247 241 230 225 221 214 30-06 VMD 331 316 305 295	10% 13% 15% 17% 19% 20% 21% 23% 24% 25% 27% #402 <141 11% 13% 15% 17%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C VC VC VC VC	424 400 380 362 347 333 309 299 271 80-06 VMD 456 435 418	4% 6% 8% 9% 10% 11% 13% 14% 15% 4402 4141 3% 4% 5%	80% 82% 83% 85% 86% 87% 88% 89% 90% 88-06 <600 76% 79% 81%	XC XC VC VC VC C C C MR8 XC XC XC XC XC XC XC XC XC	517 496 478 463 450 428 419 410 396 30-06 VMD	3% 3% 4% 4% 5% 5% 6% 6% 7% #4029 <141	65% 69% 71% 74% 75% 78% 80% 82% 90-06 <600	XC X	587 567 551 536 524 503 494 486 471 30-06 VMD	1% 2% 2% 2% 3% 3% 4% 4% #4028 <141	53% 57% 60% 63% 65% 68% 71% 73% 80-06 <600
-05 Nozzles 80 -06	0.34 0.38 0.41 0.45 0.45 0.50 0.53 0.61 0.63 0.67 Flow us gpm 0.40 0.44 0.48	20 25 30 35 40 45 50 60 65 70 80 Boom psi 20 25 30	18 23 27 32 36 41 45 54 59 63 72 Tip psi 17 22 26 30 35	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 6.3-25 yer Speed (o 10gPA 3-12 3.3-13 3.5-14	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.5-14 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12gpa 2.5-9.8 2.8-11 3-12 3.3-13	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 g) @ 15gPA 2-7.8 2-7.8 2.4-9.6	C C C C C C C C C C	303 287 274 263 255 247 241 230 225 221 214 30-06 VMD 331 316 305 295 287	10% 13% 15% 17% 19% 20% 21% 23% 24% 25% #402 <141 11% 13% 15% 17%	95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C VC VC VC VC	424 400 380 362 347 333 309 299 271 80-06 VMD 456 435 418 404	4% 6% 8% 9% 10% 11% 13% 14% 15% 4402 441 3% 44% 5% 6%	80% 82% 83% 85% 86% 87% 88% 89% 90% 88-06 <600 76% 79% 81%	XC XC VC VC VC C C C MR8 XC XC XC XC XC XC XC XC XC	517 496 478 463 450 428 419 410 396 30-06 VMD	3% 3% 4% 4% 5% 5% 6% 6% 7% <141 2% 3% 3%	65% 69% 71% 74% 75% 78% 80% 82% 80-06 <600 61% 64% 67%	XC X	587 567 551 536 524 503 494 486 471 30-06 VMD	1% 2% 2% 2% 3% 3% 4% 4% #4028 <141	53% 57% 60% 63% 65% 68% 71% 73% 80-06 <600
-05 Nozzles	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.61 0.63 0.67 Flow us gpm 0.40 0.44 0.48 0.52	20 25 30 35 40 45 50 60 65 70 80 Boom psi 20 25 30 35	18 23 27 32 36 41 45 54 59 63 72 Tip psi 17 22 26 30	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Sprat 7.5 4-16 4.5-18 4.8-19 5.3-21	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 6.3-25 yer Speed (0 10gpa 3-12 3.3-13 3.5-14 4-16	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12 _{GPA} 2.5-9.8 2.8-11 3-12	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.5-14 3.8-15 4-16 4.3-17 9) @ 15 _{GPA} 2-7.8 2.2-8.8 2.4-9.6 2.5-10	C C C C C C C C C C C C C C C C C C C	303 287 274 263 255 247 241 230 225 221 214 30-06 VMD 331 316 305 295 287	10% 13% 15% 17% 19% 20% 21% 23% 24% 25% 27% 4402 <141 11% 13% 15% 17% 18%	95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C VC VC VC VC VC C	424 400 380 362 347 333 309 299 271 80-06 VMD 456 435 418	4% 6% 8% 9% 10% 11% 13% 14% 15% 4402 4141 3% 4% 5%	80% 82% 83% 85% 86% 87% 88% 89% 90% 88-06 <600 76% 79% 81%	XC XC XC VC VC VC C C XC XC XC XC XC XC XC	517 496 478 463 450 428 419 410 396 30-06 VMD	3% 3% 4% 4% 5% 5% 6% 6% 7% <141 2% 3% 3%	65% 69% 71% 74% 75% 78% 80% 82% 90-06 <600	XC X	587 567 551 536 524 503 494 486 471 30-06 VMD	1% 2% 2% 2% 3% 3% 4% 4% #4028 <141	53% 57% 60% 63% 65% 68% 69% 71% 73% 80-06 48% 52% 54%
-05 Nozzles 80 -06	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.63 0.67 Flow us gpm 0.40 0.44 0.48 0.52 0.56	20 25 30 35 40 45 50 60 65 70 80 Boom psi 20 25 30 35 40	18 23 27 32 36 41 45 54 59 63 72 Tip psi 17 22 26 30 35	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6.3-25 yer Speed (0 10gPA 3-12 3.3-13 3.5-14 4-16 4.3-17	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.5-14 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12gpa 2.5-9.8 2.8-11 3-12 3.3-13	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3.3-13 3.5-14 4.16 4.3-17 (g) @ 15gpa 2-7.8 2.2-8.8 2.4-9.6 2.5-10 2.8-11	C C C C C C C C C C C C C C C C C C C	303 287 274 263 255 247 241 230 225 221 214 80-06 VMD 331 316 305 295 287 281	10% 13% 15% 17% 19% 20% 21% 23% 24% 25% 27% 4402 <141 11% 13% 15% 17% 18%	95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C VC VC VC VC VC C	424 400 380 362 347 333 309 299 271 30-06 VMD 456 435 418 404 392	4% 6% 8% 9% 10% 11% 13% 14% 15% 4402 441 3% 44% 5% 6%	80% 82% 83% 85% 86% 87% 88% 99% 90% 88-06 <600 76% 81% 82% 84%	XC XC XC VC VC VC C C C XX C XX C XX C	517 496 478 463 450 428 419 410 396 30-06 VMD 544 524 509	3% 3% 4% 4% 5% 5% 6% 6% 7% <141 2% 3% 3%	65% 69% 71% 74% 78% 79% 80% 82% 90-06 <600 61% 64% 67% 69%	XC X	587 567 551 536 524 503 494 486 471 80-06 VMD 613 595 579 566	1% 2% 2% 2% 3% 3% 3% 4% 4% #4028 <141 1% 1% 2%	53% 57% 60% 63% 65% 68% 69% 71% 73% 80-06 <600 48% 52% 54% 56%
-05 Nozzles 80 -06	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.61 0.63 0.67 Flow us gpm 0.40 0.44 0.48 0.52 0.59	20 25 30 35 40 45 50 60 65 70 80 Boom psi 20 25 30 35 40 44 45 50	18 23 27 32 36 41 45 54 59 63 72 Tip psi 17 22 26 30 35 39 43	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 5.3-25 yer Speed (o 10gPA 3-12 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12gPA 2.5-9.8 2.8-11 3.3-12 3.3-13 3.5-14 3.8-15	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 g) @ 15GPA 2-7.8 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3-12 3-12	C C C C C C C C C	303 287 274 263 255 247 241 230 225 221 214 80-06 VMD 331 316 305 295 287 281	10% 13% 15% 17% 19% 20% 21% 23% 24% 25% 27% +402 <141 11% 13% 15% 17% 18% 19% 21%	95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C VC VC VC VC C C C C C C C C C C C C C C C C C C C	424 400 380 362 347 333 309 299 271 80-06 VMD 456 435 418 404 392 382	4% 6% 8% 9% 10% 11% 13% 14% 15% #402 <141 3% 5% 6% 7%	80% 82% 83% 85% 86% 87% 89% 90% 88-06 <600 76% 79% 81% 82% 84%	XC XC VC VC VC C C MR8 Classs XC XC XC XC XC XC	517 496 478 463 450 428 419 410 396 30-06 VMD 544 524 509 495 483	3% 4% 4% 5% 5% 6% 6% 7% #4029 <141 2% 3% 3% 3% 4%	65% 69% 71% 74% 75% 78% 80% 82% 90-06 <600 61% 64% 67% 69% 71%	XC X	587 567 551 536 524 503 494 486 471 80-06 VMD 613 595 579 566 555	1% 2% 2% 2% 3% 3% 3% 4% 4% 411 1% 1% 2% 2% 2%	53% 57% 60% 63% 65% 68% 69% 71% 73% 80-06 <600 48% 52% 54% 56% 58%
-05 Nozzles 80 -06	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.61 0.63 0.67 Flow us gpm 0.40 0.44 0.48 0.52 0.56 0.59 0.63	20 25 30 35 40 45 50 60 65 70 80 80 m psi 20 25 30 35 40 45 50 60 65 70 80 80 40 45 50 60 65 70 60 65 60 60 60 60 60 60 60 60 60 60 60 60 60	18 23 27 32 36 41 45 54 59 63 72 Tip psi 17 22 26 30 35 39 43	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 5.3-25 yer Speed (o 10gPA 3-12 3.3-13 3.5-14 4.16 4.3-17 4.5-18 4.8-19 5-20	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12gpa 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4.3-17	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 9) @ 15gpa 2-7.8 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3-12 3.5-14	C C C C C C C C C M M	303 287 274 263 255 247 241 230 225 221 214 0-06 VMD 331 316 305 295 287 287 287 281 275 265	10% 13% 15% 17% 20% 21% 23% 24% 25% 27% #402 <141 11% 13% 15% 19% 21% 22% 21% 23%	95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 400 380 362 347 333 309 299 271 80-06 VMD 456 435 418 404 392 382 364	4% 6% 8% 9% 10% 11% 13% 14% 15% 44% 5% 6% 7% 7% 8%	80% 82% 83% 85% 86% 87% 88% 89% 89% 90% 76% 79% 81% 82% 84% 85% 87%	XC XC VC VC VC C C C MR8 Classs XC	517 496 478 463 450 419 410 396 VMD 524 524 509 483 463	3% 3% 4% 4% 5% 5% 6% 6% 6% 44029 <141 2% 3% 3% 3% 4% 4%	65% 69% 71% 74% 75% 78% 79% 80% 82% 661% 64% 67% 61% 67% 71% 74%	XC X	587 567 551 536 524 503 494 486 471 80-06 VMD 613 595 579 566 555 535	1% 2% 2% 2% 3% 3% 4% 4% #4028 <141 1% 2% 2% 2% 3%	53% 57% 60% 63% 65% 68% 69% 71% 73% 80-06 48% 52% 54% 56% 69%
-05 Nozzles 80 -06	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.61 0.63 0.67 Flow 0.40 0.44 0.48 0.52 0.56 0.59 0.69 0.71	20 25 30 35 40 45 50 60 65 70 80 80 95 20 25 30 35 40 40 45 50 60 65 70 80 80 95 40 40 45 45 40 40 45 40 40 40 40 40 40 40 40 40 40 40 40 40	18 23 27 32 36 41 45 54 59 63 72 Tip psi 17 22 26 30 35 39 43 52 57	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6.3-25 yer Speed (o 10gPA 3-12 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12grA 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 3.8-15 4.3-17 4.5-18	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 (g) @ 15gpa 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3-12 3.5-14 3.5-14	C C C C C C C C C C C C C C C C C C C	303 287 274 263 247 241 230 225 221 214 20-06 331 316 305 295 287 281 275 265 260	10% 13% 15% 17% 20% 21% 23% 24% 25% 27% 4402 411 11% 13% 15% 17% 18% 23% 23% 23%	95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 400 380 362 333 309 299 271 80-06 VMD 456 435 418 404 392 382 364 357	4% 6% 8% 9% 11% 13% 14% 1402 141 3% 4% 6% 6% 7% 7% 8%	80% 82% 83% 85% 86% 89% 90% -600 -76% 79% 81% 82% 82% 84% 82% 87%	XC XC VC VC VC C C C MR8 XC XC XC XC VC	517 496 478 463 450 428 419 410 396 50-06 VMD 524 524 509 495 483 463 463 454	3% 3% 4% 5% 5% 6% 6% 7% #4029 <141 2% 3% 3% 44% 4% 5%	65% 69% 71% 75% 78% 80% 82% <600 61% 64% 67% 77% 75%	XC X	587 567 551 536 524 503 494 486 471 800-06 VMD 613 595 579 566 555 535 527	1% 2% 2% 3% 3% 3% 4% 4% 411 1% 1% 2% 2% 3% 3%	53% 57% 60% 63% 65% 68% 69% 71% 73% 80-06 48% 52% 54% 56% 61% 63%
-05 Nozzles 80 -06	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.67 Flow us gpm 0.40 0.44 0.48 0.52 0.56 0.59 0.63 0.69 0.71	20 25 30 35 40 45 50 60 65 70 80 80 80 80 80 20 25 30 35 40 45 45 45 45 45 45 45 45 45 45 45 45 45	18 23 27 32 36 41 45 59 63 72 Tip psi 17 22 26 30 35 39 43 59 57 61	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.3-29	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 6.3-25 yer Speed (o 10gPA 3.3-13 3.5-14 4-16 4.8-19 5-20 5.5-21 5.5-22	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12gPA 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4.8-15 4.8-15	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 19) @ 15GPA 2-7.8 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3-12 3.5-14 3.8-15	C C C C C C C C C C C C C C C C C C C	303 287 274 263 225 247 241 230 225 221 214 00-06 VMD 331 316 395 287 281 275 260 265 265 265 265 265 265 267 275 287 287 287 287 287 287 287 287	10% 13% 15% 19% 20% 21% 23% 24% 27% #402 <141 11% 13% 15% 17% 18% 23% 23% 24%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 400 380 362 333 309 299 289 271 30-06 VMD 456 435 418 404 392 382 382 364 357 350	4% 6% 8% 9% 10% 11% 13% 15% #402 <141 3% 6% 7% 6% 7% 8% 9%	80% 82% 83% 86% 87% 88% 89% 90% 88-06 <600 76% 81% 82% 85% 85% 87% 88%	XC XC VC VC VC C C C MR8 XC XC XC XC VC	517 496 478 463 450 428 419 410 396 80-06 VMD 524 509 495 483 463 463 464 447	3% 3% 4% 4% 5% 6% 6% 7% #402! <141 2% 3% 3% 3% 4% 4% 5% 5%	65% 69% 71% 74% 75% 78% 80% 82% 600 61% 64% 67% 69% 71% 75% 76%	XC X	587 567 551 536 524 503 494 486 471 00-06 VMD 613 595 579 566 555 535 527 519	1% 2% 2% 3% 3% 3% 4% 4% 411 1% 12% 2% 2% 33% 33% 33% 33%	53% 57% 60% 63% 65% 68% 69% 71% 80-06 <600 48% 52% 54% 61% 63% 64%
-05 Nozzles 80 -06	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.58 0.61 0.63 0.67 Flow us gpm 0.40 0.44 0.48 0.52 0.59 0.63 0.63 0.74 0.79	20 25 30 35 40 45 50 60 65 70 80 80 mpsi 20 25 30 35 40 44 45 50 66 65 70 80 60 65 70 80 60 65 70 80 60 60 60 60 60 60 60 60 60 60 60 60 60	18 23 27 32 36 41 45 59 63 72 Tip psi 17 22 26 30 35 39 43 52 57 61 70	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.3-29 7.8-31	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 5.3-25 yer Speed (o 10gPA 3-12 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 5.5-22 6-24	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12gPA 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 3.8-15 4.3-17 4.5-18 4.5-18	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 g) @ 15GPA 2-7.8 2.4-9.6 2.5-10 2.8-11 3-12 3-12 3-12 3-12 3-14 3.8-15 4-16	C C C C C C C C C C C C C C C C C C C	303 287 274 263 225 247 241 230 225 221 244 0-06 VMD 331 316 305 295 287 281 275 265 260 260 260 260 260 275 275 271 271 271 271 271 271 271 271	10% 13% 15% 19% 20% 21% 23% 24% 4402 <141 11% 13% 15% 17% 18% 21% 23% 24% 24% 24% 26%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 400 380 362 347 333 309 299 271 30-06 VMD 456 435 418 404 392 382 364 455 357 350 338	4% 6% 8% 9% 10% 11% 13% 14% 4402: <141 3% 6% 7% 6% 7% 8% 9% 90 90 10%	80% 82% 83% 86% 87% 88% 89% 89% 89% <600 76% 81% 82% 84% 85% 87% 88% 88%	XC XC VC VC VC C C C MR8 Classs XC XC XC VC	517 496 478 463 450 428 419 410 396 80-06 VMD 524 495 483 463 463 454 447 433	3% 3% 4% 4% 5% 6% 7% #402! <141 2% 3% 3% 3% 4% 4% 5% 5% 5% 5% 5% 5% 5% 6% 7%	65% 69% 71% 74% 75% 80% 80% 80% <600 61% 64% 69% 71% 75% 75% 75% 75%	XC X	587 567 551 536 524 503 494 471 00-06 VMD 613 595 579 566 555 535 527 519 506	1% 2% 2% 3% 3% 4% 4% 44% #4028 <141 1% 2% 2% 2% 3% 3% 3% 3% 3%	53% 57% 60% 63% 65% 69% 71% 80-06 <600 48% 52% 54% 61% 63% 64% 66%
-05 Nozzles 80 -06	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.63 0.67 Flow us gpm 0.40 0.44 0.48 0.52 0.56 0.59 0.63 0.67 Flow	20 25 30 35 40 45 50 60 65 70 80 Boom psi 20 25 30 35 40 45 50 66 65 70 80 80 80 80 80 60 60 60 60 60 60 60 60 60 60 60 60 60	18 23 27 32 36 41 45 59 63 72 Tip psi 17 22 26 30 35 39 43 52 57 70 Tip	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.3-29 7.8-31 Spra	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6.3-25 yer Speed (0 10gPA 3-12 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 5.5-22 6-24 yer Speed (0	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12GPA 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 3.8-15 4.3-17 4.5-18 4.5-18 5-20 n 20" spacin	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 (g) @ 15gpa 2-7.8 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3-12 3.5-14 3.8-15 4-16 9) @	C C C C C C C C C C C C C C C C C C C	303 287 274 263 255 247 241 230 20-26 221 214 30-06 305 287 281 275 265 260 265 249	10% 13% 15% 19% 20% 21% 23% 25% 27% #402 2-141 11% 13% 15% 17% 21% 23% 23% 24% 23% 24% 24% 24% 24% 24% 24% 24% 24% 24% 25% 24% 24% 24% 24% 25% 24% 24% 25% 27% 24% 24% 25% 24% 25% 24% 25% 24% 25% 24% 25% 25% 26% 26% 26% 26% 26% 26% 26% 26% 26% 26	95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 400 380 362 347 333 309 299 271 30-06 VMD 456 435 418 404 392 382 364 357 350 338 30-08	4% 6% 8% 9% 10% 11% 13% 14% 15% #402 <141 3% 6% 7% 6% 7% 8% 99 10% 4402	80% 82% 83% 85% 86% 88% 89% 90% 88-06 <600 76% 81% 82% 85% 87% 87% 88% 88% 88%	XC XC VC VC VC C C C MR8 XC	517 496 478 463 450 428 419 410 80-06 VMD 544 509 495 483 463 454 447 433 80-08	3% 4% 4% 5% 6% 7% #402! <141 2% 3% 4% 4% 5% 5%	65% 69% 71% 74% 75% 80% 82% 80% 64% 6600 61% 67% 71% 75% 75% 69% 71% 75% 75% 75% 75% 75% 75%	XC X	587 567 551 536 524 494 486 471 10-06 VMD 613 595 579 566 555 527 519 506 60-08	1% 2% 2% 2% 3% 3% 4% 4% #402t <141 1% 1% 2% 2% 3% 3% 3% 3% 4% 4% 4% #402t #402t	53% 57% 60% 63% 65% 68% 69% 71% 73% 80-06 48% 52% 54% 56% 63% 64% 66% 80-08
-05 Nozzles 80 -06	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.61 0.63 0.67 Flow us gpm 0.40 0.44 0.48 0.52 0.59 0.63 0.69 0.71 0.74 0.79 Flow	20 25 30 35 40 45 50 60 65 70 80 80 80 66 65 70 80 80 80 80 80 80 80 80 80 80 80 80 80	18 23 27 32 36 41 45 59 63 72 Tip psi 17 22 26 30 35 39 43 52 57 61 70 Tip psi 97 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.3-29 7.8-31 Spra 7.5 4-16 9.5-21 9.5-22 9.7-28	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6.3-25 yer Speed (o 10gea 3-12 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 5.5-22 6-24 yer Speed (o	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 126PA 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 3.8-15 3.8-15 4.3-17 4.5-18 4.5-18 1-20 1 20" spacin 186PA	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 (g) @ 15gpa 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3-12 3-12 3-12 3-12 3-12 3-14 3.5-14 3.5-14 3.5-14 3.6-14 3.8-15 4-16 (g) @ 20gpa	C C C C C C C C C C C C C C C C C C C	303 287 274 263 255 247 241 230 225 221 214 214 331 316 VMD 331 295 287 281 275 265 260 256 260 256 249	10% 13% 15% 19% 20% 21% 23% 25% 27% #402 <141 13% 15% 17% 21% 23% 24% 24% 25% 27% 24% 25% 24% 25% 24% 25% 24% 25% 24% 25% 24% 25% 25% 27% 25% 27% 25% 27% 25% 27% 27% 27% 27% 27% 27% 27% 27% 27% 27	95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 400 380 362 347 333 309 299 271 30-06 VMD 456 435 418 404 392 382 364 455 357 350 338	4% 6% 8% 9% 10% 11% 13% 14% 15% #402 <141 3% 6% 7% 6% 7% 8% 99 10% 4402	80% 82% 83% 86% 87% 88% 89% 89% 89% <600 76% 81% 82% 84% 85% 87% 88% 88%	XC XC VC VC VC C C C MR8 XC	517 496 478 463 450 428 419 410 80-06 VMD 544 509 495 483 463 454 447 433 80-08	3% 4% 4% 5% 6% 7% #402! <141 2% 3% 4% 4% 5% 5%	65% 69% 71% 74% 75% 80% 82% 80% 64% 6600 61% 67% 71% 75% 75% 69% 71% 75% 75% 75% 75% 75% 75%	XC X	587 567 551 536 524 494 486 471 10-06 VMD 613 595 579 566 555 527 519 506 60-08	1% 2% 2% 2% 3% 3% 4% 4% #402t <141 1% 1% 2% 2% 3% 3% 3% 3% 4% 4% 4% #402t #402t	53% 57% 60% 63% 65% 68% 69% 71% 73% 80-06 48% 52% 54% 56% 63% 64% 66% 80-08
-05 Nozzles 80 -06 Nozzles	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.67 Flow us gpm 0.40 0.44 0.48 0.52 0.56 0.63 0.69 0.71 0.74 0.79 Flow us gpm 0.79 0.79 0.59	20 25 30 35 40 45 50 60 65 70 80 Boom psi 20 25 30 35 50 60 65 70 80 80 80 80 80 80 80 80 80 80 80 80 80	18 23 27 32 36 41 45 59 63 72 Tip psi 17 22 26 30 35 35 57 61 70 Tippisi 20	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.3-29 7.8-31 Spra 7.5-31 Spra 7.5-31 Spra 7.5-32 7.	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 5.8-23 5.8-23 5.3-25 yer Speed (o 10GPA 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 5.5-22 6-24 yer Speed (o 15GPA 2.8-11	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12gpa 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4.3-17 4.5-18 4.5-18 4.5-18 4.5-18 4.5-18 4.5-18 4.5-18 2.3-9.3	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 19) @ 156PA 2-7.8 2.4-9.6 2.5-10 2.8-11 3-12 3-12 3.5-14 3.8-15 4-16 9) @ 2.6-10 2.8-11 3-12 3.5-14 3.8-15 4-16 4.3-17	C C C C C C C C C C C C C C C C C C C	303 287 274 263 255 247 241 230 225 221 214 80-06 331 316 305 287 281 275 265 260 249 0-08 265 265 260 270 285 295 295 295 295 295 295 295 295 295 29	10% 13% 15% 19% 20% 21% 24% 25% 244 11% 13% 15% 21% 23% 244 23% 244 244 11% 12%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 400 380 362 347 333 309 299 289 271 30-06 436 435 418 404 392 382 364 357 350 338 0-08 VMD	4% 6% 8% 9% 10% 13% 13% 14% 15% 44% 5% 6% 7% 7% 78 8% 99% 10% 4402:<141	80% 82% 83% 85% 86% 87% 89% 89% 88-06 -600 76% 82% 84% 85% 87% 88% 88% 88% 88% 88%	XC XC VC VC VC C C C MR8 XC	517 496 478 463 450 428 419 410 80-06 VMD 544 509 495 483 463 454 447 433 80-08	3% 4% 4% 5% 6% 7% #402! <141 2% 3% 4% 4% 5% 5%	65% 69% 71% 74% 75% 80% 82% 80% 64% 6600 61% 67% 71% 75% 75% 69% 71% 75% 75% 75% 75% 75% 75%	XC X	587 567 551 536 524 494 486 471 10-06 VMD 613 595 579 566 555 527 519 506 60-08	1% 2% 2% 2% 3% 3% 4% 4% #402t <141 1% 1% 2% 2% 3% 3% 3% 3% 4% 4% 4% #402t #402t	53% 57% 60% 63% 65% 68% 69% 71% 73% 80-06 48% 52% 54% 56% 63% 64% 66% 80-08
80 -06 Nozzles	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.61 0.63 0.67 Flow us gpm 0.40 0.44 0.48 0.52 0.56 0.63 0.69 0.71 0.74 0.79 Flow us gpm 0.63	20 25 30 35 40 45 50 60 65 70 80 Boom psi 20 25 30 45 50 60 60 65 70 80 80 80 80 80 80 80 80 80 80 80 80 80	18 23 36 41 45 59 63 72 Tip psi 17 22 26 30 35 57 70 Tip psi 70 Tip psi 70 17 70 Tip psi 70 17 70 17 70 17 70 17 70 17 70 17 70 70 70 70 70 70 70 70 70 70 70 70 70	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.28 7.3-29 7.8-31 Spra 12GPA 3.5-14 3.8-15	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 4.3-12 3.3-12 3.3-14 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 5.5-22 6-24 yer Speed (0 15gra 2.8-11 3-12	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12gPA 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4.3-17 4.5-18 5-20 n 20" spacin 18gPA 2.5-10	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 (g) @ 15gpa 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3-12 3.5-14 3.8-15 4-16 2.1-8.3 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3.5-14 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.3-12 3.5-14 3.3-12 3.5-14 3.3-12 3.5-14 3.3-12 3.5-14 3.3-12 3.5-14 3.3-12 3.5-14 3.3-12 3.5-14 3.3-12 3.5-14 3.3-16 3.	C C C C C C C C C C C C C C C C C C C	303 287 274 263 255 247 241 230 225 221 214 30-06 VMD 331 295 287 265 260 249 0-08 VMD 368 368 368 368 368	10% 13% 17% 19% 20% 21% 23% 24% 25% #402 <141 11% 23% 21% 23% 24% 21% 23% 24% 24,402 24,402 24,41 24,402 24,41 24,402 24,41 24,402 24,41 2	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 400 380 362 347 333 309 299 289 271 80-06 435 418 404 392 382 364 409 392 382 363 WMD	4% 6% 8% 9% 10% 13% 13% 14% \$#402:<141 3% 4% 6% 7% 6% 8% 9% 10% #402:<141 6%	80% 82% 83% 85% 86% 89% 89% 89% <600 76% 79% 81% 82% 85% 87% 85% 87% 88-08 86-00 52%	XC XC VC VC VC C C C MR8 XC	517 496 478 463 450 428 419 410 80-06 VMD 544 509 495 483 463 454 447 433 80-08	3% 4% 4% 5% 6% 7% #402! <141 2% 3% 4% 4% 5% 5%	65% 69% 71% 74% 75% 80% 82% 80% 64% 6600 61% 67% 71% 75% 75% 69% 71% 75% 75% 75% 90008	XC X	587 567 551 536 524 494 486 471 10-06 VMD 613 595 579 566 555 527 519 506 60-08	1% 2% 2% 2% 3% 3% 4% 4% #402t <141 1% 1% 2% 2% 3% 3% 3% 3% 4% 4% 4% #402t #402t	53% 57% 60% 63% 65% 68% 68% 71% 73% 80-06 <60 48% 52% 54% 56% 61% 63% 64% 66% 80-06
-05 Nozzles 80 -06 Nozzles	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.58 0.61 0.63 0.67 Flow us gpm 0.40 0.74 0.79 Flow us gpm 0.50 0.63 0.69 0.71 0.74 0.79 Flow us gpm 0.56 0.69 0.66	20 25 30 35 40 45 50 60 65 70 80 Boom psi 20 25 30 35 50 60 65 70 80 80 80 80 80 80 80 80 80 80 80 80 80	18 23 27 32 36 41 45 54 59 63 72 Tip psi 30 35 39 43 52 57 61 70 Tip psi 20 24 24 28	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.3-29 7.8-31 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.3-29 7.3-29 7.3-31 Spra 12gpa 3.5-14 3.8-15 4-16	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6.3-25 yer Speed (o 10gPA 3-12 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 5.5-22 6.24 yer Speed (o 15gPA 2.8-11 3.3-12 3.3-13	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12grA 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 3.8-15 4.3-17 4.5-18 4.5-18 4.5-18 4.5-18 2.3-9.3 2.3-9.3 2.3-9.3 2.3-9.3 2.3-9.3 2.8-11	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 (g) @ 15gpa 2-7.8 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3	C C C C C C C C C C C C C C C C C C C	303 287 274 263 255 247 241 230 225 221 214 80-06 331 316 305 287 281 275 265 260 249 0-08 265 265 260 270 285 295 295 295 295 295 295 295 295 295 29	10% 13% 17% 19% 20% 21% 25% 24% 25% <141 11% 13% 17% 18% 23% 24% 24% 25% 4402 24% 24% 244 11% 11% 11% 11% 11% 11% 11% 11% 11% 1	95% 95% 95% 95% 95% 95% 95% 95% 95% 0-06 <600 92% 91% 91% 90% 90% 0-08 <600 86% 90%	VC VC C C C C C C C C C C C C C C C C C	424 400 380 362 347 333 309 299 289 271 30-06 VMD 456 418 404 392 364 357 350 308 VMD 57 404 405 405 405 405 405 405 405 405 405	4% 6% 8% 9% 10% 13% 13% 15% #402 <141 3% 4% 6% 7% 9% 9% 9%	80% 82% 83% 85% 86% 88% 89% 90% 88-06 <600 76% 81% 82% 84% 85% 87% 88% 89% 87% 88% 89% 85% 86% 87% 86% 89% 89% 85% 85% 85% 85% 85% 85% 85% 85% 85% 85	XC XC VC VC VC C C C C MR8 Class XC	517 496 478 463 450 410 410 509 544 509 495 495 483 463 454 447 473 483 463 454 447 473 473 474 475 476 477 477 477 477 477 477 477 477 477	3% 3% 4% 4% 5% 6% 6% 6% 40% 3% 34% 44% 5% 5% 44% 45% 44% 45% 44% 44% 44%	65% 69% 71% 74% 75% 78% 80% 82% 80% 6600 61% 64% 69% 75% 75% 78% 69% 75% 69% 75% 69% 76% 69% 76% 69%	XC X	587 567 551 536 524 503 494 486 471 80-06 VMD 613 595 579 566 527 555 535 527 519 VMD	1% 2% 2% 3% 3% 3% 4% 4% 4% 1% 11% 2% 2% 3% 3% 3% 3% 3% 3% 3% 3% 44028 <<141	53% 57% 60% 60% 60% 60% 60% 71% 73% 60% 48% 52% 56% 61% 66% 80-08 <60
80 -06 Nozzles	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.61 0.63 0.67 Flow us gpm 0.40 0.44 0.48 0.52 0.56 0.63 0.69 0.71 0.74 0.79 Flow us gpm 0.63	20 25 30 35 40 45 50 60 65 70 80 Boom psi 20 25 30 45 50 60 60 65 70 80 80 80 80 80 80 80 80 80 80 80 80 80	18 23 36 41 45 59 63 72 Tip psi 17 22 26 30 35 57 70 Tip psi 70 Tip psi 70 17 70 Tip psi 70 17 70 17 70 17 70 17 70 17 70 17 70 70 70 70 70 70 70 70 70 70 70 70 70	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.28 7.3-29 7.8-31 Spra 12GPA 3.5-14 3.8-15	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 5.8-23 4.3-12 3.3-12 3.3-14 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 5.5-22 6-24 yer Speed (0 15gra 2.8-11 3-12	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12gPA 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4.3-17 4.5-18 5-20 n 20" spacin 18gPA 2.5-10	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 (g) @ 15gpa 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3-12 3.5-14 3.8-15 4-16 2.1-8.3 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3.5-14 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.8-15 4-16 3.3-12 3.5-14 3.3-12 3.5-14 3.3-12 3.5-14 3.3-12 3.5-14 3.3-12 3.5-14 3.3-12 3.5-14 3.3-12 3.5-14 3.3-12 3.5-14 3.3-12 3.5-14 3.3-16 3.	C C C C C C C C C C C C C C C C C C C	303 287 274 263 255 247 241 230 225 221 214 30-06 VMD 331 295 287 265 260 249 0-08 VMD 368 368 368 368 368	10% 13% 17% 19% 20% 21% 24% 25% 24% 402 2111 11% 13% 15% 19% 23% 24% 24% 24% 24% 24% 24% 24% 24% 24% 24	95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 400 380 362 347 333 309 299 289 271 80-06 435 418 404 392 382 364 409 392 382 363 WMD	4% 6% 8% 9% 10% 13% 13% 14% \$#402:<141 3% 4% 6% 7% 6% 8% 9% 10% #402:<141 6%	80% 82% 83% 85% 86% 88% 89% 90% 88-06 <600 76% 84% 85% 84% 85% 87% 88% 88% 88% 86% 600 600 600 600 600 600 600 600 600 6	XC XC VC VC VC C C C MR8 Class XC XC XC XC XC XC XC XC VC VC VC VC MR8 Class	517 496 478 463 450 410 410 509 544 509 495 495 483 463 454 447 473 483 463 454 447 473 473 474 475 476 477 477 477 477 477 477 477 477 477	3% 3% 4% 4% 5% 6% 7% #402! <141 7%	65% 69% 71% 74% 78% 80% 80% 690-06 <600 61% 64% 67% 69% 71% 76% 76% 76% 69% 6600	XC X	587 567 551 536 524 503 494 486 471 80-06 VMD 613 595 579 566 527 555 535 527 519 VMD	1% 2% 2% 2% 3% 3% 4% 4% #402t <141 1% 1% 2% 2% 3% 3% 3% 3% 4% 4% 4% #402t #402t	53% 60% 63% 65% 68% 69% 71% 73% 80-06 <60 48% 52% 54% 63% 63% 64% 66% 80-08
80 -06 Nozzles	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.58 0.61 0.63 0.67 Flow us gpm 0.40 0.74 0.79 Flow us gpm 0.50 0.63 0.69 0.71 0.74 0.79 Flow us gpm 0.56 0.69 0.66	20 25 30 35 40 45 50 60 65 70 80 80 80 80 45 20 25 30 45 40 45 50 60 65 70 80 80 80 80 80 80 80 80 80 80 80 80 80	18 23 27 32 36 41 45 54 59 63 72 Tip psi 30 35 39 43 52 57 61 70 Tip psi 20 24 24 28	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.3-29 7.8-31 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.3-29 7.3-29 7.3-31 Spra 12gpa 3.5-14 3.8-15 4-16	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6.3-25 yer Speed (o 10gPA 3-12 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 5.5-22 6.24 yer Speed (o 15gPA 2.8-11 3.3-12 3.3-13	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12grA 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 3.8-15 4.3-17 4.5-18 4.5-18 4.5-18 4.5-18 2.3-9.3 2.3-9.3 2.3-9.3 2.3-9.3 2.3-9.3 2.8-11	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 (g) @ 15gpa 2-7.8 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3	C C C C C C C C C C C C C C C C C C C	303 287 274 263 255 247 241 230 225 221 214 80-06 VMD 331 316 295 287 287 281 265 260 256 0-08 VMD 368 368 368 378 388 389 389 389 389 389 389 389 389 38	10% 13% 17% 19% 20% 21% 23% 24% 25% #402 <141 11% 15% 15% 23% 24% 26% #402 141 11% 15% 17% 18% 19% 141 12% 141 14% 16% 19% 19%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 400 380 362 347 333 309 299 289 271 30-06 VMD 456 418 404 392 364 357 350 308 VMD 57 404 405 405 405 405 405 405 405 405 405	4% 6% 8% 9% 10% 13% 13% 15% #402 <141 3% 4% 6% 7% 9% 9% 9%	80% 82% 83% 85% 86% 88% 89% 90% 88-06 <600 76% 81% 82% 84% 85% 87% 88% 89% 87% 88% 89% 85% 86% 87% 86% 89% 89% 85% 85% 85% 85% 85% 85% 85% 85% 85% 85	XC XC VC VC VC C C C MR8 Class XC XC XC XC XC XC XC XC VC VC VC VC MR8 Class	517 496 478 463 450 410 410 509 544 509 495 495 483 463 454 447 473 483 463 454 447 473 473 474 475 476 477 477 477 477 477 477 477 477 477	3% 3% 4% 4% 5% 6% 7% #402! <141 7% 7%	65% 69% 71% 74% 80% 80% 82% 6600 61% 64% 67% 74% 75% 78% 90-08 <600	XC X	587 567 551 536 524 503 494 486 471 80-06 VMD 613 595 579 566 527 555 535 527 519 VMD	1% 2% 2% 3% 3% 3% 4% 4% 4% 1% 11% 2% 2% 3% 3% 3% 3% 3% 3% 3% 3% 44028 <<141	53% 57% 60% 63% 65% 68% 69% 71% 73% 80-06 <60 52% 54% 63% 64% 66% 80-08 <60
80 -06 Nozzles	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.67 Flow us gpm 0.40 0.44 0.48 0.52 0.56 0.63 0.69 0.71 0.74 0.79 Flow us gpm 0.40 0.52 0.63	20 25 30 35 40 45 50 60 65 70 80 80 80 80 65 20 25 30 45 50 60 65 70 80 80 80 80 80 80 80 80 80 80 80 80 80	18 23 36 41 45 59 63 72 Tip psi 17 22 26 30 35 35 39 43 52 70 Tip psi 20 24 28 32 36	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.3-29 7.8-31 Spra 7.5-21 3.8-15 4-16 4.5-18 4.8-19	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 5.8-23 5.8-23 5.3-25 yer Speed (o 10gPA 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 5.5-22 6-24 yer Speed (o 15gPA 2.8-11 3-12 3.3-13 3.5-14 3.5-14 3.5-14 3.8-15	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12gPA 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4.3-17 4.5-18 4.5-18 4.5-18 4.5-18 4.5-18 4.5-18 4.5-18 3-20 n 20" spacin 18gPA 2.3-9.3 2.5-10 2.8-11 3-12	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 19) @ 15GPA 2.7-8 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3-12 3-12 3-12 3-12 3-14 3.8-15 4-16 2.5-14 3.8-15 4-16 2.5-14 3.8-15 4-16 2.5-19 2.5-19 2.1-8.3 2.3-9.1 2.5-9.9 2.8-11 2.8-11 2.8-11	C C C C C C C C C C C C C C C C C C C	303 287 274 263 255 247 241 230 225 221 214 30-06 WMD 331 331 295 287 287 281 275 265 260 260 249 30-08 345 326 326 327 347 347 347 347 347 347 347 347 347 34	10% 13% 17% 19% 20% 21% 23% 24% 25% #402 <141 11% 15% 15% 23% 24% 26% #402 141 11% 15% 17% 18% 19% 141 12% 141 14% 16% 19% 19%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 400 380 362 347 299 289 271 30-06 VMD 456 435 418 404 439 382 364 404 392 382 369 VMD 524 450 450 450 450 450 450 450 450 450 45	4% 6% 8% 9% 10% 13% 13% 14% \$402:<141 3% 4% 5% 6% 7% 88 #402:<141 10% 4402:<141 10% 88%	80% 82% 83% 85% 88% 89% 89% 89% 6000 76% 79% 81% 82% 82% 85% 87% 88~08 600 57% 600 57% 600 63%	XC XC VC VC VC C C C MRR Class XC VC	517 496 478 463 450 428 419 410 509 544 524 495 483 463 30-08 WMD 524 495 483 464 47 433 30-08 WMD	3% 3% 4% 4% 5% 6% 7% #402! <141 7% 7%	65% 69% 71% 74% 80% 80% 82% 6600 61% 64% 67% 74% 75% 78% 90-08 <600	XC X	587 567 551 536 524 503 494 486 60-06 VMD 613 595 566 555 535 500 80-08 VMD 60-08 599	1% 2% 2% 2% 3% 3% 3% 4% 4% 44028 <<141 1% 1% 2% 2% 2% 3% 3% 3% 3% 34% 44028 <<141 3% 44%	53% 57% 60% 63% 65% 68% 71% 73% 80-06 <600 48% 61% 63% 64% 66% 80-08 <600
80 -06 Nozzles	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.58 0.61 0.63 0.67 Flow us gpm 0.40 0.44 0.48 0.52 0.56 0.59 0.63 0.67 Flow us gpm 0.62 0.67 0.71 0.74 0.75 0.62 0.67 0.77	20 25 30 35 40 45 50 60 65 70 20 25 30 40 45 50 66 65 70 80 80 80 80 80 80 80 80 80 80 80 80 80	18 23 36 41 45 54 59 63 72 Tip psi 17 22 26 30 35 39 43 52 57 61 Tip psi 20 24 28 32 36 39	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.3-29 7.3-20 7.3	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6.3-25 yer Speed (0 10gPA 3-12 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 5.5-22 6-24 yer Speed (0 15gPA 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12gpa 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4.3-17 4.5-18 4.5-18 5-20 n 20" spacin 18gpa 2.3-9.3 2.5-10 2.8-11 3-12 3.3-13	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 (g) @ 15gpa 2-7.8 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3-12 3.5-14 3.8-15 4-16 (g) @ 20gpa 2.1-8.3 2.3-9.1 2.5-9.9 2.8-11 3-12	C C C C C C C C C C C C C C C C C C C	303 287 274 263 255 247 241 230 225 221 214 316 305 287 281 295 260 260 260 275 281 249 368 368 375 375 375 375 375 375 375 375 375 375	10% 13% 13% 17% 19% 20% 24% 24% 27% #4022 <141 13% 15% 23% 24% 4402 <244 14% 16% 18% 18% 18% 19% 20%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C C C C C C SR8 Class VC C C C C C C C C C C C C C C C C C	424 400 380 362 347 333 309 299 271 80-06 VMD 456 435 357 350 0-08 VMD 524 450 524 466 466 475	4% 6% 8% 9% 10% 11% 13% 13% 15% #402 <141 3% 6% 7% 8% 9% 496 940 968 978	80% 82% 83% 85% 86% 89% 90% 88-06 <600 76% 82% 84% 85% 87% 88% 87% 88% 8600 52% 60% 66%	XC XC VC VC VC C C C MR8 Class XC VC	517 496 478 463 463 450 428 419 396 30-06 VMD 544 524 450 483 454 447 473 30-08 VMD	3% 3% 4% 5% 6% 7% #402: <141 2% 3% 3% 4% 4% 5% 5% #402: <141 7% #402:	65% 69% 71% 75% 78% 80% 82% 800-06 6600 61% 64% 67% 69% 75% 6600 65% 6600	XC X	587 567 551 536 524 503 494 471 80-06 VMD 613 595 579 566 555 527 519 VMD VMD	1% 2% 2% 2% 3% 3% 4% 4% 1% 1% 1% 2% 2% 3% 3% 44% 4% 4%	53% 57% 60% 63% 65% 68% 69% 71% 73% 8-60 -60 -60% 52% 54% 66% 80-08 -60% 58% 66% 66% 58% 55% 55% 55% 55%
80 -06 Nozzles	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.58 0.61 0.63 0.67 Flow us gpm 0.40 0.44 0.48 0.52 0.56 0.59 0.63 0.67 0.71 0.74 0.79 0.87	20 25 30 35 40 45 50 60 65 70 80 80 80 80 35 40 45 50 66 65 70 80 80 80 80 80 80 80 80 80 80 80 80 80	18 23 36 41 45 54 59 63 72 Tip psi 35 39 43 20 24 24 28 32 36 39 47	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.3-29 7.8-31 Spra 12GPA 3.5-14 3.8-15 4-16 4.5-18 4.8-19 5-20 5.5-22	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6.3-25 yer Speed (0 10gPA 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 5.5-22 5.8-21 5.5-22 4.11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12grA 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 3.8-15 3.8-15 4.3-17 4.5-18 4.5-18 4.5-18 2.3-9.3 2.5-10 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3-12 3-13 3.5-14	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 (g) @ 15gpa 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3-12 3-12 3.5-14 3.8-15 4-16 (g) @ 20gpa 2.1-8.3 2.3-9.1 2.5-9.9 2.8-11 2.8-11 2.8-11 2.3-12 3.3-12 3.3-13	C C C C C C C C C C C C C C C C C C C	303 287 274 263 255 247 241 230 225 221 214 30-06 VMD 331 331 295 265 249 VMD 368 368 VMD 368 345 345 345 345 345 345 345 345 347 348 348 349 349 349 349 349 349 349 349 349 349	10% 13% 13% 17% 19% 20% 23% 24% 25% 24% 11% 13% 15% 18% 19% 23% 24% 26% 23% 24% 26% 2141 12% 14% 18% 18% 19% 23% 24% 24% 23% 24% 23% 24% 24% 23% 24% 24% 23% 24% 24% 23% 24% 24% 23% 24% 24% 23% 24% 24% 24% 24% 24% 24% 24% 24% 24% 24	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 400 380 362 347 333 309 299 271 80-06 435 418 440 4392 382 364 357 350 0-08 VMD	4% 6% 8% 9% 10% 13% 13% 15% #402 <141 3% 4% 5% 6% 7% 9% 9% 9% 94 10% 8% 8% 8% 10%	80% 82% 83% 85% 86% 89% 88% 89% 90% 88-06 <600 76% 81% 82% 84% 85% 87% 88% 89% 85% 600 57% 60% 63% 63% 66% 70%	XC XC VC VC VC C C C MR8 Class XC	517 496 478 463 450 428 419 396 30-06 VMD 544 524 450 495 483 454 447 433 00-08 VMD	3% 3% 4% 4% 5% 5% 6% 7% #402! <141 2% 3% 3% 4% 5% 5% 5% 5% 5% 5% 5% 5% 8% 8%	65% 69% 71% 74% 75% 78% 78% 80% 82% 82% 600 61% 64% 69% 71% 66% 69% 65% 66% 67% 69%	XC X	587 567 551 536 524 503 494 471 80-06 VMD 613 595 579 566 555 527 519 500 VMD	1% 2% 2% 2% 3% 3% 3% 4% 4% 4% 1% 1% 2% 2% 2% 2% 2% 241 141 3% 3% 3% 3% 3% 4% 44028 <<141 1	53% 57% 60% 63% 65% 66% 69% 71% 80-060 48% 52% 54% 61% 63% 66% 80-08 55% 66% 80-08
80 -06 Nozzles	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.58 0.61 0.63 0.67 Flow us gpm 0.44 0.48 0.52 0.56 0.59 0.63 0.69 0.71 0.74 0.79 Flow us gpm 0.40 0.79 Flow 0.79 0.79 0.71 0.75 0.79 0.87	20 25 30 35 40 45 50 60 65 80 80 80 80 80 80 65 70 80 80 80 80 80 80 80 80 80 80 80 80 80	18 23 27 32 36 41 45 59 63 72 Tip psi 35 39 43 52 26 30 Tip psi 22 26 30 43 59 59 59 59 59 59 59 59 59 59 59 59 59	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.3-29 7.8-31 Spra 12@PA 3.5-14 3.8-15 4-16 4.5-18 4.8-19 5-20 5.5-22 5.5-22	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 5.8-23 6.3-25 yer Speed (0 10ePA 3-12 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 5.5-22 6-24 yer Speed (0 15ePA 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12gpa 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 3.8-15 4.3-17 4.5-18 4.5-18 5-20 n 20" spacin 18gpa 2.3-9.3 2.5-10 2.3-13 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 19) @ 156PA 2-7.8 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3-12 3-12 3-12 3-12 3-14 3.8-15 4-16 19) @ 20GPA 2.1-8.3 2.3-9.1 2.8-11 3-12 3.3-13 3.3-13	C C C C C C C C C C C C C C C C C C C	303 287 274 263 255 247 230 225 221 214 30-06 WMD 331 331 305 295 260 287 287 287 287 289 3-0-08 331 316 305 295 305 295 317 295 318 319 319 319 319 319 319 319 319 319 319	10% 13% 13% 15% 17% 19% 20% 23% 24% 25% #402 <141 11% 13% 15% 4402 24% 26% 24% 24% 26% 24% 26% 24% 26% 23% 24% 24% 26% 24% 24% 22% 244% 22% 244% 22% 244%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 400 380 362 347 333 309 299 289 271 30-06 435 418 392 382 364 404 392 357 350 388 30-08 404 404 404 404 405 406 406 406 406 406 406 406 406 406 406	4% 6% 8% 9% 10% 11% 13% 14% 14% 3% 4402 <141 3% 4402 <141 6% 6% 4402 <141 6% 8% 8% 8% 10% 8%	80% 82% 83% 86% 88% 89% 990% 88-06 <600 76% 81% 82% 84% 85% 87% 88% 860 600 60% 63% 66% 66% 66% 66%	XC XC VC VC VC C C MRR Class XC VC VC VC XC	517 496 478 463 450 428 419 396 30-06 VMD 544 524 452 483 30-08 VMD 554 447 433 30-08 VMD	3% 3% 4% 4% 5% 6% 7% #402! <141 7% 7% 8% 8% 9% 9%	65% 69% 71% 74% 80% 80% 80% 80% 6600 61% 64% 69% 71% 76% 76% 69% 67% 69% 67% 69% 77% 74%	XC X	587 5567 551 536 524 486 471 60-06 VMD 613 595 566 555 535 500-08 VMD 613 599 566 559 500-08	1% 2% 2% 3% 3% 4% 4% #4028 <141 1% 1% 2% 2% 2% 441 1% 3% 3% 44028 <141 3% 44% 45%	53% 57% 60% 63% 65% 68% 69% 71% 73% 80-06 48% 52% 54% 61% 66% 80-08 <600
80 -06 Nozzles	0.34 0.38 0.41 0.45 0.48 0.50 0.53 0.58 0.61 0.63 0.67 Flow us gpm 0.40 0.44 0.48 0.52 0.56 0.59 0.63 0.67 0.71 0.74 0.79 0.87	20 25 30 35 40 45 50 60 65 70 80 80 80 80 35 40 45 50 66 65 70 80 80 80 80 80 80 80 80 80 80 80 80 80	18 23 36 41 45 54 59 63 72 Tip psi 35 39 43 20 24 24 28 32 36 39 47	4.3-17 4.8-19 5-20 5.5-22 6-24 6.3-25 6.5-26 7.3-29 7.5-30 7.8-31 8.3-33 Spra 7.5 4-16 4.5-18 4.8-19 5.3-21 5.5-22 6-24 6.3-25 6.8-27 7-28 7.3-29 7.8-31 Spra 12GPA 3.5-14 3.8-15 4-16 4.5-18 4.8-19 5-20 5.5-22	3-12 3.5-14 3.8-15 4.3-17 4.5-18 4.8-19 5-20 5.5-22 5.8-23 6.3-25 yer Speed (0 10gPA 3.3-13 3.5-14 4-16 4.3-17 4.5-18 4.8-19 5-20 5.3-21 5.5-22 5.8-21 5.5-22 4.11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17	2.5-10 2.8-11 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 4.5-18 4.8-19 5-20 n 20" spacin 12grA 2.5-9.8 2.8-11 3-12 3.3-13 3.5-14 3.8-15 3.8-15 3.8-15 4.3-17 4.5-18 4.5-18 4.5-18 2.3-9.3 2.5-10 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3-12 3-13 3.5-14	2.1-8.3 2.3-9.3 2.5-10 2.8-11 3-12 3-12 3.3-13 3.5-14 3.8-15 4-16 4.3-17 (g) @ 15gpa 2.2-8.8 2.4-9.6 2.5-10 2.8-11 3-12 3-12 3.5-14 3.8-15 4-16 (g) @ 20gpa 2.1-8.3 2.3-9.1 2.5-9.9 2.8-11 2.8-11 2.8-11 2.3-12 3.3-12 3.3-13	C C C C C C C C C C C C C C C C C C C	303 287 274 263 255 247 241 230 225 221 214 316 305 287 287 281 295 260 256 368 WMD 368 378 388 WMD 368 378 388 398 398 398 398 398 398 398 398 39	10% 13% 13% 15% 17% 20% 21% 23% 24% 27% #4022 <141 11% 15% 23% 24% 24% 24% 24% 24% 24% 24% 24%	95% 95% 95% 95% 95% 95% 95% 95% 95% 95%	VC VC C C C C C C C C C C C C C C C C C	424 400 380 362 347 333 309 271 80-06 VMD 456 435 357 350 80-08 VMD 524 502 482 494 404 413 404 444 444 444 444 444 444 444 444 44	4% 6% 8% 9% 10% 13% 13% 15% #402 <141 3% 4% 5% 6% 7% 9% 9% 9% 94 10% 8% 8% 8% 10%	80% 82% 83% 85% 88% 89% 88% 89% 6600 76% 79% 82% 82% 85% 87% 88~60 66% 67% 66% 67% 66% 70%	XC XC VC VC VC C C C XC XC XC VC VC VC XC	517 496 478 463 450 428 419 410 509 544 509 485 483 463 30-08 WMD 524 495 483 454 447 433 30-08 WMD	3% 3% 4% 4% 5% 6% 7% 4402! <141 7% 7% 8% 9% 10%	65% 69% 71% 74% 80% 80% 82% 6600 61% 61% 67% 69% 75% 6600	XC X	587 567 551 536 524 486 50-06 VMD 613 595 566 555 527 519 506 500-08 VMD 613 599 586 595 595 595 595 595 595 596 595 595	1% 2% 2% 2% 3% 3% 3% 4% 44028 <<141 1% 1% 2% 2% 2% 3% 3% 3% 44028 <<141 3% 4% 4% 4% 4% 5% 5%	539 579 609 639 659 689 719 739 80-0 <60 489 529 549 639 649 669 80-0 <60 <60 <60 559 669 679 669 679 669 669 669 66

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. "Shown application information is based on water @ 80°F in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 80° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

Fine (F) ASABE Spray Classification (ASABE S5/2.1 Standard)

Spray quality is categorized based on Dv.0.1 and VMD droplet sizes.

Objective testing data (by 3rd party), from paray spectrum recording equipment (without wind tunner use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.), can vary between testing equipment and method, and is provided as a neducational resource only.

Extremely Coarse (XC)

Ultra Coarse (UC)

Ultra Coarse (UC) ASABE Spray Classification (ASABE S572.1 Standard)

VMD (Volume Median Diameter) sprayed volume. Half of the volume is made of droplets smaller, with half made up of droplets larger.

% <141µ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray drift will increase substantially

% <600µ (% of Small Droplets) % of volume which is made up of small' droplets, useful for coverage As % of useful droplets lowers, overall coverage is reduced

	Flow	Boom	Tip	Spra	yer Speed (o	n 20" spacin	g) @	ER8	0-10	#402	70-10	SR8	80-10	#402	88-10	MR8	80-10	#402	90-10	DR8	0-10	#4028	30-10
	us gpm	psi	psi	15gpa	18gpa	20gpa	25gpa	Class	VMD	<141	<600												
	0.73	30	21	3.5-14	3-12	2.8-11	2.2-8.6	XC	450	9%	78%												
	0.79	35	25	4-16	3.3-13	3-12	2.3-9.3	XC	429	10%	80%	UC	538	6%	49%								
80	0.84	40	28	4.3-17	3.5-14	3-12	2.5-10	XC	412	11%	81%	UC	520	6%	54%								
-10	0.89	45	32	4.5-18	3.8-15	3.3-13	2.8-11	VC	398	12%	82%	UC	504	7%	57%	UC	539	5%	63%	UC	605	5%	53%
Nozzles	0.94	50	35	4.8-19	4-16	3.5-14	2.8-11	VC	385	13%	83%	UC	489	7%	60%	UC	527	6%	65%	UC	595	5%	55%
	1.03	60	42	5-20	4.3-17	3.8-15	3-12	С	364	15%	85%	XC	464	8%	64%	UC	507	6%	68%	UC	577	5%	58%
	1.07	65	46	5.3-21	4.5-18	4-16	3.3-13	С	356	15%	85%	XC	453	8%	66%	UC	498	7%	69%	UC	569	6%	59%
	1.11	70	49	5.5-22	4.5-18	4.3-17	3.3-13	С	348	16%	86%	XC	442	9%	67%	UC	490	7%	70%	UC	562	6%	60%
	1.19	80	56	6-24	5-20	4.5-18	3.5-14	M	334	17%	87%	XC	424	9%	70%	XC	476	7%	72%	UC	550	6%	62%
	Flow	Boom	Tip	Spra	yer Speed (o	n 20" spacin	g) @	ER80)-125	#4027	0-125	SR8	0-125	#4028	8-125	MR8	0-125	#4029	0-125	DR8	0-125	#4028	0-125
	us gpm	psi	psi	15gpa	18gpa	20gpa	25gpa		VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
	0.91	35	21	4.5-18	3.8-15	3.5-14	2.8-11	XC	451	9%	77%												
80	0.97	40	24	4.8-19	4-16	3.5-14	3-12	XC	436	10%	78%		535	6%	50%								
-125	1.03	45	27	5-20	4.3-17	3.8-15	3-12	XC	423	11%		UC	520	6%	53%								
Nozzles	1.09	50	30	5.5-22	4.5-18	4-16	3.3-13	XC	412	11%		UC	508	7%	55%								
	1.19	60	36	6-24	5-20	4.5-18	3.5-14	VC	393	12%		UC	486	8%	59%		566	6%	59%		605	4%	53%
	1.24	65	39	6.3-25	5-20	4.5-18	3.8-15	VC	385	13%	83%	XC	476	8%	61%	UC	558	6%	60%		597	5%	54%
	1.29	70	42	6.3-25	5.3-21	4.8-19	3.8-15	С	377	13%		XC	467	8%	62%		551	6%	61%		589		55%
	1.38	80	48	6.8-27	5.8-23	5-20	4-16	С	364	14%		XC	451	9%	64%	UC	538	7%	63%		577		57%
	Flow	Boom	Tip		yer Speed (o			ER8	0-15	#4027		SR8	80-15		88-15	MR8	30-15		90-15	DR8	0-15	#4028	
	us gpm	psi	psi	18gpa	20gpa	25gpa	30gpa	Class	VMD	<141	<600												
80	1.08	40	21	4.5-18	4-16	3.3-13	2.8-11	XC	459	7%	76%												
-15	1.14	45	23	4.8-19	4.3-17	3.5-14	2.8-11	XC	444	8%	77%												
Nozzles	1.20	50	26	5-20	4.5-18	3.5-14	3-12	XC	430	9%	78%	UC	572	5%	44%								
	1.32	60	31	5.5-22	5-20	4-16	3.3-13	XC	408	10%	79%	UC	550	6%	48%								
	1.37	65	34	5.8-23	5-20	4-16	3.5-14	XC	399	11%		UC	540	6%	50%		500	8%	68%	UC	625	3%	50%
	1.43	70	36	6-24	5.3-21	4.3-17	3.5-14	XC	390	12%		UC	531	6%	51%	UC	491	8%	69%	UC	616	3%	51%
	1.52	80	41	6.3-25	5.8-23	4.5-18	3.8-15	VC	375				515	6%	54%	XC	476	9%	71%	UC	602		54%
		Boom	Tip		yer Speed (o				0-20	#402			30-20		88-20		30-20	#402			0-20	#4028	
	us gpm		psi	15gpa	20gpa	30gpa	40gpa		VMD			Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600
80	1.37	50	19	6.8-27	5-20	3.5-14	2.5-10	UC		6%	66%			=0/	440:								
-20	1.50	60	23	7.5-30	5.5-22	3.8-15	2.8-11		496	7%	69%			5%	41%								
Nozzles	1.56	65	24	7.8-31	5.8-23	3.8-15	3-12	UC	486	8%	70%	UC	577	5%	43%							=	
	1.62	70	26	8-32	6-24	4-16	3-12	XC	477	8%		UC	568	5%	45%								
	1.73	80	30	8.5-34	6.5-26	4.3-17	3.3-13	XC	460	9%	73%	UC	551	5%	48%	UC	564	5%	58%	UC	628	3%	50%

NOTE: 'SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. 'Shown application information is based on water @ 80°F in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 110° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Disclaimer: These charts are published for comparative purposes to demonstrate the differences in the series of Combo-Jet® spray tips. Data used to populate this chart is extrapolated from third party testing data from a controlled conditions test with water as the testing solution. Actual spray applications with active chemical ingredients may change the spray dynamics and spray tip performance specifications. Wilger is not liable for any misuse or misrepresentation of this information, leading to (but not limited to) incorrect spray application, crop damage, or any other harm. (Not limited to human, livestock or environmental). Always verify these charts with the most recent charts found on the www.wilger.net, and ALWAYS follow chemical label nozzle requirements.

ASABE Spray Classification (ASABE S572.1 Standard)
Spray quality is categorized based on DV0.1 and VMD droplet sizes.

Objective testing data (by 3rd party), from spray spectrum recording equipment (without wind tunnel use), has been used to classify spray quality for this chart. Extra data (e.g. VMD, etc.) can vary between testing equipment and method, and is provided as an educational resource only.

VMD (Volume Median Diameter) The median droplet (in μ) for a sprayed volume. Half of the volume is made of droplets smaller, with

% <141µ (% Driftable Fines) Percentage of volume which is likely to drift. As wind & boom height increase, observed spray

% <600µ (% of Small Droplets) % of volume which is made up of 'small' droplets, useful for coverage. As % of useful droplets lowers,

Ļ	betweer Tips sized up to	testing equ 110-06 verifie	ipment and d on Phase (d method. Doppler Par	, and is provided ticle Analyzer (PDPA	as an educatior A); tips sized over 1	nal resource only. 10-06 verified on Ma	L Extre alvem. ■ Ultra						up of dro		rger.				ubstanti				overage		
Ī	Nozzle	Flow	_	-	Applica	ation Rate in	n US Gallon	s / Acre			Spray	Classi	ficatio	n: VM[) (Dron	let Size	e in u): %<1	41u (D	rift %):	%<6	00u (S	mall Di	roplets))	
ı	Size &	Rate	Boom PSI	Tip psi		on 20" Noz	zzle Spacing]			o° Serie	es		SR110	° Serie	es		MR110)° Serie	es		DR110	° Serie	S		Series
ı	Angle	USGPM	_	-			d in Miles /		Class				Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD
		Flow us gpm	Boom	Tip psi	2 _{GPA}	ar Speed (C	on 20" spaci 4 _{GPA}	ing) @ 5gpa	Class	10-01 VMD		81-01 <600														
ı		0.07	20	20	2.5-10	1.8-7	1.3-5.2	1.1-4.2	F	149		100%														
		0.08	25	25	2.9-12	2-7.8	1.5-5.9	1.2-4.7	F	144		100%														
	110	0.09	30	30	3.3-13	2.2-8.6	1.6-6.4	1.3-5.1	F	140		100%														
	-01	0.09	35	35	3.5-14	2.3-9.2	1.7-6.9	1.4-5.5	F	136		100%														
	Nozzles	0.10 0.11	40 45	40 45	3.8-15 3.9-16	2.5-9.9 2.5-10	1.9-7.4 2.0-7.9	1.5-5.9 1.6-6.3	F	133 131		100% 100%														
		0.11	50	50	4.2-17	2.8-11	2.1-8.3	1.7-6.6	F	128		100%														
		0.12	60	60	4.6-18	3.0-12	2.3-9.1	1.8-7.3	F	124		100%														
		0.13	65	65	4.7-19	3.2-13	2.4-9.4	1.9-7.6	F	123		100%														
		0.13	70	70	4.9-20	3.3-13	2.5-9.8	2.0-7.8	F	121		100%														
ı	_	0.14 Flow	80 Boom	80 Tip	5.3-21 Spraye	3.5-14	2.5-10 on 20" spaci	2.1-8.4	FR1	118 10-015		100%	SR11	0-015	#4028	37-015	MR1	In - 015	#4020	1-015	DR11	0-015	#4028	6-015		
		us gpm	psi	psi	3gpa	4GPA	5GPA	6gpa	Class		<141			VMD		<600				<600			<141			
		0.11	20	20	2.5-10	2.0-7.8	1.6-6.3	1.3-5.2	F	153	40%	100%														
		0.12	25	25	2.9-12	2.2-8.8	1.8-7.0	1.5-5.8	F	148		100%	M	226	21%	98%										
	110	0.13	30	30	3.2-13	2.4-9.6	1.9-7.7	1.6-6.4	F	145	47%	100%	F	216	24%	98%	C	323	11%	94%	C	368	7%	92%		
	-015 Nozzles	0.14 0.15	35 40	35 40	3.5-14 3.7-15	2.5-10 2.8-11	2.1-8.3 2.2-8.9	1.7-6.9 1.9-7.4	F	142 139		100% 100%	F	207	26% 28%	98% 98%	C	298 279	14% 16%	96% 97%	C	346 329	8% 10%	93%		
	MOZZICO	0.15	45	45	3.9-16	3.0-12	2.4-9.4	2.0-7.8	F	137		100%	F	194	30%	98%	M	262	18%	98%	C	315	11%	95%		
4		0.17	50	50	4.1-17	3.1-12	2.5-9.9	2.1-8.3	F	135	55%	100%	F	188	32%	98%	M	248	20%	98%	С	302	12%	95%		
Į.		0.18	60	59	4.5-18	3.5-14	2.8-11	2.3-9.1	F	131		100%	F	178	34%	98%	M	226	23%	99%	С	282	14%	96%		
ė		0.19	65	64	4.7-19	3.5-14	2.8-11	2.4-9.4	F	129		100%	F	173	36%	98%	F	217	24%	99%	С	273	15%	96%		
J		0.20 0.21	70 80	69 79	4.9-20 5.2-21	3.8-15 3.9-16	3.0-12 3.3-13	2.5-9.8 2.5-10	F	128 125	61%	100% 100%	F	169 162	37% 39%	98% 98%	F	209 195	25% 27%	99% 100%	M	265 252	15% 17%	97% 97%		
		Flow	Boom	Tip			n 20" spaci			10-02		81-02	SR1	10-02		87-02	MR1	10-02	#4029			10-02	#4028			
		us gpm	psi	psi	3 _{GPA}	4 _{GPA}	5gpa	6 _{GPA}	Class	VMD	<141		Class	VMD	<141		Class		<141	<600	Class	VMD	<141	<600		
1		0.14	20	20	3.5-14	2.5-10	2.1-8.3	1.7-6.9	F	173		100%														
	110	0.16 0.17	25 30	25 29	3.9-16 4.3-17	2.9-12 3.3-13	2.3-9.3 2.5-10	2.0-7.8 2.1-8.5	F	166		100% 100%		228 220	20% 22%	99%	С	317	11%	95%	VC	433	5%	82%		
٩	110 -02	0.17	35	34	4.5-17	3.5-13	2.8-11	2.3-9.2	F	160 155		100%		213	24%	99%	C	297	13%	96%	VC VC	412	6%	85%		
1	Nozzles	0.20	40	39	4.9-20	3.8-15	3.0-12	2.5-9.8	F	151		100%	F	207	26%	99%	Č	281	15%	97%	VC	394	6%	87%		
		0.21	45	44	5.3-21	3.9-16	3.1-13	2.5-10	F	147		100%	F	202	27%	99%	M	267	17%	97%	С	378	7%	88%		
4		0.22	50	49	5.5-22	4.1-16	3.3-13	2.8-11	F	144		100%	F	197	28%	99%	M	256	18%	97%	C	364	8%	90%		
		0.24 0.25	60 65	59 64	6.0-24 6.3-25	4.5-18 4.8-19	3.5-14 3.8-15	3.0-12 3.3-13	E	138 136		100% 100%	F	189 185	31% 32%	99%	M	237 229	21% 22%	98% 98%	C C	339 328	9% 10%	91% 92%		-
		0.26	70	69	6.5-26	4.8-19	3.9-16	3.3-13	F	133		100%	F	182	32%	99%	M	222	23%	98%	C	318	10%	93%		
Į,		0.28	80	79	7.0-28	5.3-21	4.3-17	3.5-14	F	129		100%	F	176	34%	99%	F	210	25%	99%	Č	299	11%	94%		
		Flow	Boom	Tip			on 20" spaci			10-025		31-025	SR11			37-025				1-025		0-025	#4028			0-025
		us gpm	psi	psi	3gpa	4GPA	5GPA	6GPA	Class		<141		Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	
		0.17	20 25	19 24	4.3-17 4.8-19	3.3-13 3.5-14	2.5-10 2.9-12	2.2-8.6 2.4-9.7	F	194 190		100% 100%	М	246	17%	98%									#402	92-025
	110	0.21	30	29	5.3-21	4.0-16	3.3-13	2.8-11	F	187		100%		237	19%	98%	С	353	8%	90%	VC	437	5%	79%		
	-025	0.23	35	34	5.8-23	4.3-17	3.5-14	2.8-11	F	184	29%	100%	М	230	21%	98%	С	337	10%	92%	VC	418	6%	83%	UC	568
	Nozzles	0.25	40	39	6.1-24	4.5-18	3.8-15	3.1-12	F	181		100%		223	22%	98%	C	322	11%	93%	VC	401	6%	86%	UC	546
1		0.26 0.28	45 50	44 49	6.5-26 6.8-27	4.8-19 5.1-21	3.9-16 4.1-17	3.3-13 3.5-14	F	179 177		100% 100%		218 213	24% 25%	98% 98%	C	310 299	12% 13%	94% 95%	C	386 373	7% 8%	88% 89%	UC	526 509
		0.20	60	58	7.5-30	5.5-22	4.5-18	3.8-15	F	173		100%	F	204	27%	98%	C	280	15%	96%	C	350	9%	91%	XC	478
		0.31	65	63	7.8-31	5.8-23	4.8-19	3.9-16	F	172	31%	100%	F	200	28%	98%	Č	271	16%	96%	С	340	9%	92%	XC	465
		0.33	70	68	8.1-32	6.1-24	4.8-20	4.1-16	F	170		100%	F	196	28%	98%	M	263	16%	96%	С	331	10%	93%	XC	453
		0.35	80 Room	78 Tip	8.8-35 Spraye	6.5-26	5.3-21 on 20" spaci	4.3-17	FD1	168 10-03		100% 81-03		190	30% #402	98% 87-03	MR1		18% #4029	97% 91-03	C DR1	314 10-03	10% #4028	94%	XC IIR1	431 10-03
7		Flow us gpm	Boom psi	psi	4gpa	ei speeu (u 5gpa	6.0gpa	HIY) ₩ 8gpa		VMD						<600										
		0.21	20	19	3.8-15	3-12	2.5-10	1.9-7.7			26%															292-03
		0.23	25	24	4.3-17	3.5-14	2.9-12	2.2-8.6	F	191		99%	C	322	9%	93%										
	110	0.26	30	29	4.8-19	3.8-15	3.3-13	2.4-9.5	F	185		99%	С	307		95%		399	6%	86%	VC	464	40/	770/	IIC-	610
	-03 Nozzles	0.28	35 40	34 39	5.1-20 5.5-22	4.1-16 4.3-17	3.5-14 3.7-15	2.5-10 2.8-11	F	179 175		98% 98%		293 282		95% 96%		380 364	7% 8%	88% 90%		464 447		77% 79%	UC	618 596
	NUZZICS	0.29	45	43	5.8-23	4.8-19	3.9-15	2.9-12	F	170	36%	98%		272		96%		350	9%	91%		432		82%	UC	576
		0.33	50	48	6.1-24	4.9-20	4.1-16	3.1-12	F	167	37%	98%	M	263	17%	97%	С	337	10%	93%	VC	419	6%	83%	UC	558
		0.36	60	58	6.8-27	5.3-21	4.5-18	3.3-13	F	160	39%	97%	М	247		97%		315	11%	94%		396		86%	UC	527
		0.38	65	63	7.0-28	5.5-22	4.7-19	3.5-14	F	157		97%	M	240		97%		306	12%	95%	С	385		87%	UC	514
		0.39	70 80	68 77	7.3-29 7.8-31	5.8-23 6.3-25	4.8-19 5.3-21	3.6-14 3.8-15	F	155 150	41%	97%	M	234		97% 98%			13%	95% 96%		376 359		88% 89%		501 478
1		0.42	- 00		1.0-01	0.0-20	J.J-Z I	J.U-1J		130	T 74 /0	31 /0	IVI	223	LL /0	30 /0	U	201	1 7 /0	30 /0	U	555	U /0	03/0	ΛU	410

NOTE: ¹SR, MR, DR, UR spray tips include pre-orifice(s). Pre-orifices are not interchangeable between different spray tips of different series. ²Shown application information is based on water @ 80°F in a controlled environment and should not be considered actual. Information is provided for comparison to other Combo-Jet® spray tips, for educational purposes only. Repeat testing results can vary.

COMBO-JET 110° Spray Tips - PWM Spray Systems

Comprehensive rate & speed charts for any nozzle spacing/speed/rate is available on Tip Wizard. Try it today!

Duty Cycle (Effective 'on time' of solenoid)

The duty cycle is the effective 'on time' of a PVMM solenoid. Generally speed ranges are based on a 25% - 100% duty cycle. When selecting a nozzle, often a duty cycle of 60-80% is recommended at typical speeds, providing flexibility for upper speed & turning situations, as well as slower spraying speeds. It is not advised to spray below 40% duty cycle.

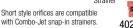
Calculating Duty Cycle on Printed Charts (Useful for nozzle sizing & selection)
On Wilger printed charts, typically a SPEED RANGE is provided, but the duty cycle % is a dynamic factor
based on the sprayers travel speed. To calculate a duty cycle at a given travel speed, divide
CURRENT sprayer speed into max nozzle speed. (e.g. 15mph / 20mph max = 75% duty cycle)

Į.	alabar ala	- 1	_			er spraying spe																			auty cycle)
			Boom	Tip psi		er Speed (o				10-04			SR1		#402	_				91-04	DR1	10-04	#4028		UR110-04
		us gpm 0.27	psi 20	19	4 _{GPA} 5-20	5 _{GPA} 4-16	7.5 2.8-11	10gpa 2-8.1	Class M	243	<141 18%	<600 97%	Class	VMD	<141	<600	Ulass	VMD	<141	<600	Class	VMD	<141	<600	Class VMD #40292-04
		0.27	25	23	5.8-23	4.5-18	3-12	2.3-9.1	M	235	20%	97%	С	335	9%	92%									π40232-04
	110	0.34	30	28	6.3-25	5-20	3.3-13	2.5-10	M	228	21%	97%	C	319	10%	93%	VC	425	4%	83%	XC	519	3%	67%	
	-04	0.36	35	33	6.8-27	5.5-22	3.5-14	2.8-11	M	222	23%	97%	С	306	12%	94%	VC	404	5%	86%	XC	497	3%	71%	UC 631
	Nozzles	0.39	40	37	7.3-29	5.8-23	3.8-15	3-12	M	217	24%	97%	C	294	13%	95%		386	6%	88%	XC	478	4%	74%	UC 611
		0.41	45 50	42 47	7.5-30	6-24	4-16 4.3-17	3-12	F	213	25% 26%	96%	C	284	14%	95%	СС	370 355	7%	90%	VC VC	462 447	4% 5%	77% 79%	UC 593 UC 577
		0.43 0.47	50 60	56	8-32 8.8-35	6.5-26 7-28	4.3-17	3.3-13 3.5-14	F	209 202	27%	96% 96%	M	275 259	15% 17%	96% 96%	C	330	8% 9%	93%	VC	447	6%	82%	UC 577 UC 549
		0.49	65	61	9.3-37	7.3-29	5-20	3.8-15	F	199	28%	96%	M	252	18%	97%	C	319	9%	94%	VC	410	6%	83%	UC 537
		0.51	70	66	9.5-38	7.5-30	5-20	3.8-15	F	196	29%	96%	M	245	18%	97%	С	309	10%	95%	С	400	6%	84%	UC 526
		0.55	80	75	10-41	8.3-33	5.5-22	4-16	F	191	30%	95%	M	233	19%	97%	C	291	11%	95%	C	381	7%	86%	UC 505
			Boom	Tip psi	Spray 6gpa	er Speed (o 8gpa	n 20" spac 10gpa	ing) @ 12gpa	ER1 Class	10-05 VMD	#4028 <141		SR1 Class	10-05 VMD		87-05 <600		10-05 VMD		91-05 <600		10-05 VMD	#4028 <141		UR110-05 Class VMD
		us gpm 0.34	psi 20	18	4.3-17	3-12	2.5-10	2.1-8.3	M	253	17%	95%	Olass	VIVID	~141	<000	UIASS	VIVID	<141	~000	UIASS	VIVID	<14T	~000	#40292-05
		0.38	25	23	4.8-19	3.5-14	2.8-11	2.3-9.3	M	242	19%	95%	С	388	6%	88%									
	110	0.41	30	27	5-20	3.8-15	3-12	2.5-10	M	233	21%	95%	C	367	7%	90%		501	3%	69%					
	-05 Nozzles	0.45 0.48	35 40	32	5.5-22	4.3-17	3.3-13 3.5-14	2.8-11	M	225 219	23% 25%	95% 95%	C	349 334	9% 10%	92%		478 459	4% 4%	73% 76%	XC	525 513	2% 3%	64%	UC 652 UC 634
	NUZZIES	0.46	45	36 41	6-24 6.3-25	4.5-18 4.8-19	3.8-15	3-12 3-12	F	213	26%	95%	C	320	11%	94%		442	5%	78%	XC	502	3%	66% 68%	UC 618
\		0.53	50	45	6.5-26	5-20	4-16	3.3-13	F	208	27%	95%	Č	308	12%	94%		427	5%	80%	XC	492	3%	70%	UC 604
		0.58	60	54	7.3-29	5.5-22	4.3-17	3.5-14	F	199	29%	95%	С	287	14%	95%		400	6%	83%	XC	475	3%	73%	UC 582
		0.61	65	59	7.5-30	5.8-23	4.5-18	3.8-15	F	195	30%	95%	C	277	15%	96%	C	389	6%	84%	XC	467	3%	74%	UC 572
		0.63 0.67	70 80	63 72	7.8-31 8.3-33	5.8-23 6.3-25	4.8-19 5-20	4-16 4.3-17	F	191 185	31% 32%	95% 95%	M	269 253	15% 17%	96% 97%	C	378 359	7% 7%	85% 87%	VC	460 448	4% 4%	75% 77%	UC 563 UC 547
			Boom	Tip		er Speed (o			_	10-06		31-06		10-06		87-06				91-06		10-06	#4028		UR110-06
		us gpm	psi	psi	7.5	10gpa	12gpa	15gpa	Class	VMD	<141	<600	Class			<600		VMD	<141			VMD		<600	Class VMD
	110	0.44	25	22	4.5-18	3.3-13	2.8-11	2.2-8.8	С	278	15%		VO	400	F0/	0404									#40292-06
	110 -06	0.48	30 35	26 30	4.8-19 5.3-21	3.5-14 4-16	3-12 3.3-13	2.4-9.6 2.5-10	M	268 260	16%	94%	VC VC	438 414	5% 6%	81% 84%	XC	506	3%	68%	XC	563	2%	58%	
3	Nozzles	0.56	40	35	5.5-22	4.3-17	3.5-14	2.8-11	M	253	19%	94%	C	393	7%	87%		490	3%	71%	XC	547	2%	61%	UC 653
		0.59	45	39	6-24	4.5-18	3.8-15	3-12	M	247	20%	94%	С	375	8%	88%	XC	477	4%	74%	XC	532	2%	63%	UC 636
41		0.63	50	43	6.3-25	4.8-19	3.8-15	3-12	M	242	21%	95%	C	358	9%	90%		465	4%	76%	XC	519	3%	65%	UC 622
41		0.69	60 65	52 57	6.8-27 7-28	5-20 5.3-21	4.3-17 4.5-18	3.5-14 3.5-14	M	233 228	23%	95% 95%	C	330 318	11%	92%	VC VC	443 434	5% 5%	79% 80%	XC	496 486	3%	69% 70%	UC 597 UC 587
41		0.74	70	61	7.3-29	5.5-22	4.5-18	3.8-15	M	225	24%	95%	C	306	12%	93%	VC	426	5%	81%	XC	476	3%	71%	UC 578
Ш		0.79	80	70	7.8-31	6-24	5-20	4-16	F	218		95%		285	13%	94%	VC	410	5%	83%	XC	460	3%	73%	UC 561
4			Boom	Tip		er Speed (o				10-08				10-08		87-08				91-08		10-08	#4028		UR110-08
		us gpm 0.56	psi 25	psi 20	12 _{GPA} 3.5-14	15gpa 2.8-11	18gpa 2.3-9.3	20gpa 2.1-8.3	Class C	328	14%	<600 90%	Class	VMD	<141	<u> <0UU</u>	UIBSS	VIVID	<141	\ \ \ \ \	Ulass	VIVID	<141	<000	Class VMD #40292-08
	110	0.62	30	24	3.8-15	3-12	2.5-10	2.3-9.1	С	312	15%	92%	UC	489	4%	59%									10202 00
	-08	0.67	35	28	4-16	3.3-13	2.8-11	2.5-9.9	С	298	17%	93%	XC	465	5%	64%									
-	Nozzles	0.71	40	32	4.5-18	3.5-14	3-12	2.8-11	C	286	18%	93%		445	6%	68%			4%	54%	UC	606	3%	42%	IIC 670
Ž		0.75	45 50	36 39	4.8-19 5-20	3.8-15 4-16	3-12 3.3-13	2.8-11 3-12	M	275 266	19% 20%	94% 95%	XC	427 410	7% 7%	71% 74%		503 486	5% 5%	58% 61%	UC	588 571	3% 4%	44% 47%	UC 672 UC 654
1		0.87	60	47	5.5-22	4.3-17	3.5-14	3.3-13	M	249	21%	95%	XC	382	8%	78%		455	6%	65%	UC	543	4%	50%	UC 623
Æ		0.91	65	51	5.5-22	4.5-18	3.8-15	3.3-13	M	242	22%	96%	VC	370	9%	79%	XC	442	6%	67%	UC	530	4%	52%	UC 610
		0.94 1.01	70 80	55 63	5.8-23 6.3-25	4.8-19 5-20	4-16 4.3-17	3.5-14 3.8-15	M	235 223	23% 24%	96% 96%	VC C	359 338	9% 10%	80%	XC	430 408	6% 7%	69% 71%	UC	519 498	4% 4%	53% 56%	UC 598 UC 578
		Flow	Boom	Tip	Spray	er Speed (o	n 20" spac	ing) @	ER1	10-10		81-10		10-10	#402	87-10	MR1	10-10	#402	91-10		10-10	#4028	86-10	UR110-10
		us gpm	psi	psi	15gpa	18gpa	20gpa	25gpa	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	Class VMD
ź.	110	0.73	30	21	3.5-14	3-12	2.8-11	2.2-8.6	VC	357	11%		IIO-	FOO	E0/	EC0/									#40292-10
	-10 Nozzles	0.79 0.84	35 40	25 28	4-16 4.3-17	3.3-13 3.5-14	3-12 3-12	2.3-9.3 2.5-10	C	343 330	12% 13%	89% 90%	UC	502 480	5% 6%	56% 60%	IIC	533	4%	51%					
=	1.0/2/2100	0.89	45	32	4.5-18	3.8-15	3.3-13	2.8-11	C	319	15%	91%	XC	461	6%	64%	UC	514	4%	54%	UC	604	5%	58%	
6		0.94	50	35	4.8-19	4-16	3.5-14	2.8-11	С	310	16%	91%	XC	444	7%	67%	UC	497	5%	57%	UC	595	5%	56%	UC 680
Ŷ		1.03	60	42	5-20	4.3-17	3.8-15	3-12	C	293		92%		414	8%	72%			5%	61%	UC	580	5%	54%	UC 648
į		1.07	65 70	46 49	5.3-21 5.5-22	4.5-18 4.5-18	4-16 4.3-17	3.3-13 3.3-13		285	18% 19%	92%	XC YC	389	8%	73%	XC XC	456	6%			573 566	5%	53%	UC 634 UC 621
1		1.11	80	56	6-24	5-20	4.5-17			266				368	9%	78%	XC	423	6%			555		49%	UC 599
		Flow	Boom	Tip	Spray	er Speed (o	n 20" spac	ing) @	ER11	10-125	#4028	1-125	SR1	10-125	#4028	37-125	MR1	10-125	#4029	1-125	DR11	10-125	#4028	6-125	
<		us gpm	psi	psi	15gpa	18gpa	20gpa	25gpa	Class				Class	VMD	<141	<600	Class	VMD	<141	<600	Class	VMD	<141	<600	
	110	0.84 0.91	30 35	18 21	4.3-17 4.5-18	3.5-14 3.8-15	3.3-13 3.5-14	2.5-10 2.8-11	XC	447		64% 68%													
Ž	-125	0.97	40	24	4.8-19	4-16	3.5-14	3-12	XC	416			UC	529	4%	50%									
Į.	Nozzles	1.03	45	27	5-20	4.3-17	3.8-15	3-12	XC	403	9%	73%	UC	506	4%	55%									
8		1.09	50	30	5.5-22	4.5-18	4-16	3.3-13	XC	392		75%				59%			4%	37%	ШО	640	20/	3E0/	
		1.19 1.24	60 65	36 39	6-24 6.3-25	5-20 5-20	4.5-18 4.5-18	3.5-14 3.8-15	VC	383 366		77% 79%		469 439		62% 67%	IIC	616 587	4% 4%	40% 44%	UC	626	3% 4%	35% 37%	
		1.29	70	42	6.3-25	5.3-21	4.8-19	3.8-15	VC	358		80%		425		69%			4%			618	4%	39%	
		1.38	80	48	6.8-27	5.8-23	5-20	4-16	С	351	12%	81%	XC	413	6%	71%	UC	562	5%	48%	UC	609	4%	40%	
		Flow	Boom	Tip		er Speed (o	n 20" spac		ER1	10-15		31-15		10-15		87-15	MR1	10-15		91-15	DR1	10-15		86-15	
		us gpm 1.08	40	psi 21	18 _{GPA} 4.5-18	20gpa 4-16	25gpa 3.3-13	30gpa 2.8-11	XC	VMD 434	<141 9%	<600 65%	Class	VMD	<141	<600	UIUSS	VMD	<141	<600	Class	VMD	<141	<600	
	110	1.14	45	23	4.8-19	4.3-17	3.5-14	2.8-11	XC	423		67%													
		1.20	50	26	5-20	4.5-18	3.5-14	3-12	XC	413	10%	69%	UC		4%	46%		-							
3	Nozzles	1.32	60	31	5.5-22	5-20	4-16	3.3-13	XC	395		72%	UC	534		52%			4%	41%	HC-	640	10/	420/	
		1.37	65 70	34 36	5.8-23 6-24	5-20 5.3-21	4-16 4.3-17	3.5-14 3.5-14	XC	387 380	11%	73%	IIC	522 511	5% 5%	54% 56%	IIC	595 586	4% 4%			646 637	4% 4%	42% 43%	
		1.52	80	41	6.3-25	5.8-23	4.5-17	3.8-15		367		76%			6%	59%			5%			620	4%	46%	
		Flow	Boom	Tip	Spray	er Speed (o	n 20" spac	ing) @	ER1	10-20	#4028	31-20	SR1	10-20	#402	87-20	MR1	10-20	#4029	91-20					
	110	us gpm	psi	psi	15gpa	20gpa	30gpa	40GPA	Class	VMD			Class	VMD	<141	<600	Class	VMD	<141	<600					
	110 -20	1.37	50 60	19 23	6.8-27 7.5-30	5-20 5.5-22	3.5-14 3.8-15	2.5-10 2.8-11	UC	504 484		54% 58%	IIC	557	5%	46%									
	Nozzles	1.56	65	24	7.8-31	5.8-23	3.8-15	3-12	XC	476		60%		546		48%									
		1.62	70	26	8-32	6-24	4-16	3-12	XC	468	7%	61%	UC	536	5%	51%		===	4.5.	45					
L		1.73	80	30	8.5-34	6.5-26	4.3-17	3.3-13	XC	453	8%	64%	UC	518	6%	55%	UC	593	4%	42%					

COMBO-JET_® Metering Orifices & Fertilizer Streamer Caps

COMBO-JET Fertilizer Streamer Caps

Color-coded 3-hole streamer nozzles designed for streaming liquid fertilizer on consistent spacing to minimize leaf burn.


Operating	10-60 PSI
Pressure	10-00 F3i
O-rings	FKM (viton avail.)
Material	Glass-reinforced Polypropylene

COMBO-JET Metering Orifices

Metering orifice snap into any Combo-Jet or Radialock caps to meter fertilizer or chemical flow rates.

UR series Orifices

If you are looking for replacement two-piece pre-orifices for Combo-Jet UR series spray tips, visit the UR series spray tip page for part numbers.

40292	2-27

1 ~6.7"		Material	Polypropy	امسما	3-Hole Streamer Ca	ар 🧧	with C	combo-Jet s metering o	snap-in stra	iners.		-04 40: do not requi	285-15 re strainers	40292-27					
Combo-Jet Streamer Nozzle	Meterir		Flow		utlet Sp	_		utlet Sp	_		utlet Sp	_		utlet Sp	•		utlet Sp	_	
Size	Size	(PSI)	(us gpm)		5.0 MPH		4.5 мрн		6.5 MPH		5.0 MPH		7.5 мрн	10 мрн	15 MPH		5.0 MPH		
		15	0.03	4.0	3.6	2.8	3.3	3.0	2.3	2.7	2.4	1.9	1.4	1	0.7	1.3	1.2	0.9	
Using	Θ	20	0.04	4.6	4.2	3.2	3.9	3.5	2.7	3.1	2.8	2.1	1.6	1.2	0.8	1.5	1.4	1.1	
Tip Wizard	-005	25	0.04	5.2	4.7	3.6	4.3	3.9	3.0	3.5	3.1	2.4	1.7	1.3	0.9	1.7	1.6	1.2	
makes	COMBO Meterin		0.04	5.7 6.1	5.1 5.5	3.9 4.2	4.7 5.1	4.3 4.6	3.3	3.8 4.1	3.4	2.6 2.8	1.8	1.4 1.5	0.9	1.9 2.0	1.7	1.3	
selecting	Orifice	40	0.05	6.6	5.9	4.5	5.5	4.9	3.8	4.4	3.9	3.0	2.1	1.6	1	2.2	2.0	1.5	
metering orifices &	40285-0	45	0.05	7.0	6.3	4.8	5.8	5.2	4.0	4.6	4.2	3.2	2.2	1.6	1.1	2.3	2.1	1.6	
streamer caps	_	15	0.04	5.4	4.9	3.7	4.5	4.1	3.1	3.6	3.2	2.5	1.9	1.4	0.9	1.8	1.6	1.2	
easy!		20	0.05	6.3	5.6	4.3	5.2	4.7	3.6	4.2	3.8	2.9	2.1	1.6	1	2.1	1.9	1.4	
	-0067		0.05	7.0	6.3	4.8	5.8	5.2	4.0	4.7	4.2	3.2	2.3	1.7	1.1	2.3	2.1	1.6	
	COMBO-		0.06	7.7 8.3	6.9 7.4	5.3 5.7	6.4 6.9	5.7 6.2	4.4 4.8	5.1 5.5	4.6 5.0	3.5	2.5 2.7	1.9 2	1.2	2.6 2.8	2.3	1.8 1.9	
WILGER	Orifice	40	0.07	8.8	8.0	6.1	7.4	6.6	5.1	5.9	5.3	4.1	2.8	2.1	1.4	2.9	2.7	2.0	
	40285-0	45	0.07	9.4	8.4	6.5	7.8	7.0	5.4	6.3	5.6	4.3	3	2.2	1.5	3.1	2.8	2.2	
TIP WIZARD		15	0.06	8.1	7.3	5.6	6.8	6.1	4.7	5.4	4.9	3.7	2.8	2.1	1.4	2.7	2.4	1.9	
TRY IT FREE AT	8	20	0.07	9.4	8.4	6.5	7.8	7.0	5.4	6.3	5.6	4.3	3.1	2.4	1.6	3.1	2.8	2.2	
. Download on the	-01	25	0.08	10	9.4	7.3	8.7	7.9	6.0	7.0	6.3	4.8	3.4	2.6	1.7	3.5	3.1	2.4	
App Store	COMBO Meterin		0.09	11 12	10 11	8	10 10	8.6 9.3	6.6 7.2	7.7 8.3	6.9 7.4	5.3 5.7	3.7 4	2.8	1.9	3.8 4.1	3.4	2.7	
Google Play	Orifice	40	0.09	13	12	9	11	10	7.7	8.8	8.0	6.1	4.2	3.2	2.1	4.4	4.0	3.1	
	40285-0	45	0.11	14	13	10	12	11	8.1	9.4	8.4	6.5	4.4	3.3	2.2	4.7	4.2	3.2	
		15	0.09	12	11	8.4	10	9.1	7.0	8.1	7.3	5.6	4.2	3.2	2.1	4.0	3.6	2.8	
		20	0.11	14	13	10	12	11	8.1	9.3	8.4	6.5	4.7	3.5	2.3	4.7	4.2	3.2	
4	-015 COMBO-	25 JET 30	0.12	16 17	14 15	11 12	13 14	12 13	9.0 10	10 11	9.4	7.2 7.9	5.1 5.6	3.9 4.2	2.6 2.8	5.2 5.7	4.7 5.1	3.6 4.0	
1000	Meterin		0.13	19	17	13	15	14	11	12	11	8.6	5.9	4.5	3	6.2	5.6	4.3	
	Orifice 40285-0	40	0.15	20	18	14	17	15	11	13	12	9.1	6.3	4.7	3.2	6.6	5.9	4.6	
40443-015	40200=0	45	0.16	21	19	15	18	16	12	14	13	10	6.6	5	3.3	7.0	6.3	4.8	
5		15	0.12	16	15	11	13	12	9.3	11	10	7.4	5.6	4.2	2.8	5.4	4.8	3.7	
	8	20 25	0.14	19 21	17 19	13 14	16 17	14 16	11 12	12 14	11 12	8.6 10	6.2 6.8	4.7 5.1	3.1	6.2 6.9	5.6 6.2	4.3	
	-02 COMBO-		0.16	23	21	16	19	17	13	15	14	11	7.4	5.5	3.7	7.6	6.8	5.3	
100	Meterin	g 35	0.19	25	22	17	21	18	14	16	15	11	7.9	5.9	4	8.2	7.4	5.7	
	Orifice 40285-0		0.20	26	24	18	22	20	15	18	16	12	8.4	6.3	4.2	8.8	7.9	6.1	
40443-02		45	0.21	28	25	19	23	21	16	19	17	13	8.8	6.6	4.4	9.3	8.4	6.4	
		15 20	0.15	20 23	18	14	17 19	15 17	12	13 16	12 14	9.3 11	7 7.8	5.2	3.5 3.9	6.7 7.8	6.1	4.7	
	-025	25	0.18	26	21 23	16 18	22	20	13 15	17	16	12	8.6	5.9 6.4	4.3	8.7	7.0 7.8	5.4 6.0	
\mathcal{A}	COMBO-		0.22	29	26	20	24	21	16	19	17	13	9.2	6.9	4.6	10	8.6	6.6	
136.	Meterin Orifice		0.23	31	28	21	26	23	18	21	18	14	9.9	7.4	4.9	10	9.2	7.1	
40443-025	40285-0	25 40	0.25	33	30	23	27	25	19	22	20	15	10	7.9	5.2	11	10	7.6	
104-15-025		45	0.26	35 24	31 22	24	29	26 18	20 14	23 16	21	16	11	8.3	5.5 4.2	12	10	8.1 5.6	
		15 20	0.18	28	25	17 19	20 23	18 21	16	16	15 17	11	8.4 9.4	6.3 7	4.2	8.1 9.3	7.3 8.4	6.5	
	-03	25	0.24	31	28	22	26	23	18	21	19	14	10	7.7	5.1	10	9.4	7.2	
	COMBO-		0.26	34	31	24	29	26	20	23	21	16	11	8.3	5.6	11	10	7.9	
	Meterin Orifice	- 00	0.28	37	33	26	31	28	21	25	22	17	12	8.9	5.9	12	11	8.6	
40443-03	40285-		0.30	40 42	36 38	27 29	33 35	30	23 24	26 28	24 25	18 19	13 13	9.5	6.3	13 14	12 13	9.1	
		15	0.32	32	29	29	27	24	19	22	19	15	11	8.4	5.6	11	10	7.5	
	8	20	0.28	37	34	26	31	28	22	25	22	17	13	9.4	6.3	12	11	8.6	
	-04	25	0.32	42	38	29	35	31	24	28	25	19	14	10	6.9	14	13	10	
1000	COMBO Meterin		0.35	46	41	32	38	34	26	30	27	21	15	11	7.4	15	14	11	
402	Orifice	40	0.37	49 53	44	34 37	41 44	37 40	28 30	33 35	30	23 24	16 17	12 13	7.9 8.4	16 18	15 16	11 12	
40443-04	40285-0	45	0.40	56	50	39	44	40	30	35	34	26	18	13	8.4	19	17	13	
		15	0.42	40	36	28	34	30	23	27	24	19	12	9.1	6.1	13	12	9.3	
		20	0.35	47	42	32	39	35	27	31	28	22	14	11	7	16	14	11	
	-05	25	0.40	52	47	36	43	39	30	35	31	24	16	12	7.8	17	16	12	
	COMBO Meterin		0.43	57	51	40	48	43	33	38	34	26	17	13	8.6	19	17	13	
	Orifice	40	0.47	62 66	56 59	43 46	51 55	46 49	36 38	41	37 40	28 30	19 20	14 15	9.3	21	19 20	14 15	
40443-05	40285-0	05 40 45	0.50	70	63	48	58	53	40	44	40	32	21	16	11	23	21	16	

COMBO-JET_® Metering Orifices & Fertilizer Streamer Caps

Common Liquid Weight, Specific Gravity, and Conversion Factor for Flow Rate:

Required Flow Rate x Conversion Factor = Flow Rate adjusted for density

[WATER] 8.34 lbs/gal Specific Gravity 1.0 Conversion Factor: 1.00 [28-0-0] 10.67 lbs/gal Specific Gravity 1.28 Conversion Factor: 1.13

[10-34-0] 11.65 lbs/gal Specific Gravity 1.28 Conversion Factor: 1.18

	Metering	В	Flow	10" O	utlet Sp	acing	12" O	utlet Sp	acing	15" O	utlet Sp	acing	20" O	utlet Sp	acing	30" O	utlet Sp	oacii
	Orifice	Pres. (PSI)	Rate	Applicat	tion Rate	S (GPA) @	Applicat	tion Rate	S (GPA) @	Applicat	tion Rate	S (GPA) @	Applicat	ion Rates	S (GPA) @	Applicat	tion Rate	s (GP/
	Size	(1 01)	(us gpm)	4.5 мрн	5.0 мрн	6.5 мрн	4.5 мрн	5.0 мрн	6.5 мрн	4.5 мрн	5.0 мрн	6.5 мрн	7.5 мрн	10 мрн	15 мрн	4.5 мрн	5.0 мрн	6.5
		15	0.37	49	44	34	40	36	28	32	29	22	15	11	7.3	16	15	1
	8	20	0.42	56	50	39	47	42	32	37	34	26	17	13	8.4	19	17	1
	-06	25	0.47	63	56	43	52	47	36	42	38	29	19	14	9.4	21	19	1
	COMBO-JET	30	0.52	69	62	48	57	51	40	46	41	32	21	15	10	23	21	1
32	Metering	35	0.56	74	67	51	62	56	43	49	44	34	22	17	11	25	22	1
	Orifice 40285-06	40	0.60	79	71	55	66	59	46	53	48	37	24	18	12	26	24	1
40443-06	40203-00	45	0.64	84	76	58	70	63	48	56	50	39	25	19	13	28	25	1
	Short*	15	0.49	65	58	45	54	49	37	43	39	30	19	15	9.7	22	19	1
		20	0.57	75	67	52	62	56	43	50	45	34	22	17	11	25	22	1
	-08	25	0.63	84	75	58	70	63	48	56	50	39	25	19	13	28	25	1
	COMBO-JET	30	0.69	91	82	63	76	69	53	61	55	42	27	21	14	30	27	2
1000	[Short] 40285-08s	35	0.75	99	89	68	82	74	57	66	59	46	30	22	15	33	30	2
	[Long]	40	0.80	106	95	73	88	79	61	70	63	49	32	24	16	35	32	2
40443-08	40285-08	45	0.85	112	101	78	93	84	65	75	67	52	34	25	17	37	34	2
	8T1	15	0.62	81	73	56	68	61	47	54	49	37	24	18	12	27	24	1
	Short*	20	0.02	94	84	65	78	70	54	63	56	43	28	21	14	31	28	2
	-10	25	0.79	105	94	73	87	79	60	70	63	48	31	24	16	35	31	2
	COMBO-JET													_				_
	[Short]	30	0.87	115	103	80	96	86	66	77	69	53	34	26	17	38	34	2
X.	40285-10s	35	0.94	124	112	86	103	93	72	83	74	57	37	28	19	41	37	2
40443-10	[Long] 40285-10	40	1.00	133	119	92	111	99	77	88	80	61	40	30	20	44	40	3
		45	1.07	141	127	97	117	105	81	94	84	65	42	32	21	47	42	1
	Short*	15	0.76	101	91	70	84	76	58	67	60	47	30	23	15	34	30	2
		20	0.88	116	105	81	97	87	67	78	70	54	35	26	17	39	35	2
	-125 COMBO-JET	25	0.99	130	117	90	108	98	75	87	78	60	39	29	20	43	39	3
9 7	[Short]	30	1.08	143	128	99	119	107	82	95	86	66	43	32	21	48	43	
32"	40285-125s	35	1.17	154	139	107	128	115	89	103	92	71	46	35	23	51	46	3
	[Long]	40	1.25	165	148	114	137	123	95	110	99	76	49	37	25	55	49	3
40443-125	40285-125	45	1.32	175	157	121	145	131	101	116	105	81	52	39	26	58	52	4
		15	0.92	121	109	84	101	91	70	81	73	56	36	27	18	40	36	2
		20	1.06	140	126	97	117	105	81	93	84	65	42	32	21	47	42	3
		25	1.19	157	141	108	131	117	90	104	94	72	47	35	23	52	47	[3
4 2	-15	30	1.30	172	154	119	143	129	99	114	103	79	51	39	26	57	51	4
200	COMBO-JET	35	1.40	185	167	128	154	139	107	124	111	86	56	42	28	62	56	4
	[Long]	40	1.50	198	178	137	165	149	114	132	119	91	59	45	30	66	59	_
40443-15	40285-15	45	1.59	210	189	145	175	158	121	140	126	97	63	47	32	70	63	4
		15	1.22	161	145	112	135	121	93	108	97	75	48	36	24	54	48	3
		20	1.41	186	168	129	155	140	108	124	112	86	56	42	28	62	56	4
		25	1.58	208	188	144	174	156	120	139	125	96	63	47	31	69	63	4
	00	30	1.73	228	206	158	190	171	132	152	137	105	69	51	34	76	69	
7967	-20 COMBO-JET	35	1.87	247	222	171	206	185	142	164	148	114	74	55	37	82	74	
	[Long]	40	2.00	264	237	183	220	198	152	176	158	122	79	59	40	88	79	6
40443-20	40285-20	45	2.12	280	252	194	233	210	161	186	168	129	84	63	42	93	84	6
		15	1.53	202	182	140	168	152	117	135	121	93	61	45	30	67	61	4
		20	1.77	233	210	162	194	175	135	156	140	108	70	53	35	78	70	
		25	1.98	261	235	181	217	196	151	174	157	120	78	59	39	87	78	ě
		30	2.17	286	257	198	238	214	165	191	171	132	86	64	43	95	86	6
	-25	35	2.17	309	278	214	257	232	178	206	185	142	93	69	46	103	93	 '
	COMBO-JET [Long]	40	2.50	330	297	228	275	247	190	220	198	152	99	74	49	110	99	1 /
	40285-25	45	2.65	350	315	242	292	263	202	233	210	162	105	79	53	117	105	- 6
		15	1.84	243	218	168	202	182	140	162	146	112	73	79 55	36	81	73	- 5
		20	2.12	280	252	194	234	210	162	187	168	129	84	63	42	93	84	6
		25	2.12	313	282	217	261	235	181	209	188	145	94	70	42	104	94	7
		_							_								_	_
	-30	30	2.60	343	309	238	286	257	198	229	206	158	103	77	51	114	103	7
	COMBO-JET	35	2.81	371	334	257	309	278	214	247	222	171	111	83	56	124	111	8
اسوور	[Long] 40285-30	40	3.00	396	357	274	330	297	229	264	238	183	119	89	59	132	119	!
		45	3.18	420	378	291	350	315	242	280	252	194	126	95	63	140	126	9
	40203-30		2.45	323	291	224	269	242	186	215	194	149	97	73	48	108	97	1
	40203-30	15		^	00-		311	280	215	249	224	172	112	84	56	124	112	8
	40203-30	20	2.83	373	336	258												
	10203-30	20 25	2.83 3.16	417	375	289	347	313	241	278	250	192	125	94	63	139	125	-
	-40	20 25 30	2.83 3.16 3.46	417 457	375 411	289 316	347 381	313 343	263	304	274	211	137	103	69	152	137	1
	-40 COMBO-JET	20 25 30 35	2.83 3.16 3.46 3.74	417 457 493	375 411 444	289 316 342	347 381 411	313 343 370	263 285	304 329	274 296	211 228	137 148	103 111	69 74	152 164	137 148	1
	-40 COMBO-JET [Long]	20 25 30 35 40	2.83 3.16 3.46 3.74 4.00	417 457 493 527	375 411 444 475	289 316 342 365	347 381 411 439	313 343 370 396	263 285 304	304 329 352	274 296 316	211 228 243	137 148 158	103 111 119	69 74 79	152 164 176	137 148 158	1 1 1
	-40 COMBO-JET	20 25 30 35 40 45	2.83 3.16 3.46 3.74 4.00 4.24	417 457 493 527 559	375 411 444 475 503	289 316 342 365 387	347 381 411 439 466	313 343 370 396 420	263 285 304 323	304 329 352 373	274 296 316 336	211 228 243 258	137 148 158 168	103 111 119 126	69 74 79 84	152 164 176 186	137 148 158 168	1 1 1
	-40 COMBO-JET [Long]	20 25 30 35 40	2.83 3.16 3.46 3.74 4.00	417 457 493 527	375 411 444 475	289 316 342 365	347 381 411 439	313 343 370 396	263 285 304	304 329 352	274 296 316	211 228 243	137 148 158	103 111 119	69 74 79	152 164 176	137 148 158	1 1 1
	-40 COMBO-JET [Long]	20 25 30 35 40 45	2.83 3.16 3.46 3.74 4.00 4.24	417 457 493 527 559	375 411 444 475 503	289 316 342 365 387	347 381 411 439 466	313 343 370 396 420	263 285 304 323	304 329 352 373	274 296 316 336	211 228 243 258	137 148 158 168	103 111 119 126	69 74 79 84	152 164 176 186	137 148 158 168	1 1 1 1
	-40 COMBO-JET [Long]	20 25 30 35 40 45	2.83 3.16 3.46 3.74 4.00 4.24 3.06	417 457 493 527 559 405	375 411 444 475 503 364	289 316 342 365 387 280	347 381 411 439 466 337	313 343 370 396 420 303	263 285 304 323 233	304 329 352 373 270	274 296 316 336 243	211 228 243 258 187	137 148 158 168 121	103 111 119 126 91	69 74 79 84 61	152 164 176 186 135	137 148 158 168 121	1 1 1 1 (
	-40 COMBO-JET [Long] 40285-40	20 25 30 35 40 45 15 20	2.83 3.16 3.46 3.74 4.00 4.24 3.06 3.54	417 457 493 527 559 405 467	375 411 444 475 503 364 420	289 316 342 365 387 280 323	347 381 411 439 466 337 389	313 343 370 396 420 303 350	263 285 304 323 233 269	304 329 352 373 270 311	274 296 316 336 243 280	211 228 243 258 187 216	137 148 158 168 121 140	103 111 119 126 91 105	69 74 79 84 61 70	152 164 176 186 135 156	137 148 158 168 121 140	9 11 1 11 11 12 9 11 11
	-40 COMBO-JET [Long] 40285-40	20 25 30 35 40 45 15 20 25	2.83 3.16 3.46 3.74 4.00 4.24 3.06 3.54 3.96	417 457 493 527 559 405 467 522	375 411 444 475 503 364 420 470	289 316 342 365 387 280 323 362	347 381 411 439 466 337 389 435	313 343 370 396 420 303 350 392	263 285 304 323 233 269 301	304 329 352 373 270 311 348	274 296 316 336 243 280 313	211 228 243 258 187 216 241	137 148 158 168 121 140 157	103 111 119 126 91 105 118	69 74 79 84 61 70 78	152 164 176 186 135 156 174	137 148 158 168 121 140 157	1: 1: 1: 1: 9: 1:
	-40 COMBO-JET [Long] 40285-40	20 25 30 35 40 45 15 20 25 30	2.83 3.16 3.46 3.74 4.00 4.24 3.06 3.54 3.96 4.33	417 457 493 527 559 405 467 522 572	375 411 444 475 503 364 420 470 515	289 316 342 365 387 280 323 362 396	347 381 411 439 466 337 389 435 477	313 343 370 396 420 303 350 392 429	263 285 304 323 233 269 301 330	304 329 352 373 270 311 348 381	274 296 316 336 243 280 313 343	211 228 243 258 187 216 241 264	137 148 158 168 121 140 157 172	103 111 119 126 91 105 118 129	69 74 79 84 61 70 78 86	152 164 176 186 135 156 174	137 148 158 168 121 140 157 172	1 1 1 1 (1 1 1

WWW.WIGER.NET

COMBO-JET® Narrow-Angle Nozzles for Spot Spraying

A full selection of narrow angle spray nozzles for use in specialty applications that require a narrow, but thick pattern. These nozzles are fully compatible with PWM spray systems, and other optical spray systems. Contact factory for availability.

COMBO-JET® ER & DX Series of 20°, 40° & 60° Spray Nozzles for Optical & Spot Spraying

The DX (drift redux) & ER (fine spray) narrow angle spray nozzles.

										$\overline{}$	
1					Application Rate in US Gallons / Acre	/	\ I	/			
1	Nozzla	Flow	Room	Tip	on 10" Nozzle Spacing		<u>.</u>			120020000000	
1	Size	Rate	PSI	psi	*using solenoid for ON/OFF control*					And a second	
	3126	USGPM	1 01	Poi	@ Sprayer Speed in Miles / Hour	20° N	ozzles	40° No	zzles	60° No	zzles
ı											

For smaller sizes of nozzles in narrow-angle varieties, please contact Wilger.

As sp	ot-spray	ring sys	tems (pects to h	ave a variety of effectiveness.	nozzles develo	ped to support
	Flow	Boom	Tip			n 10" spa		Drift	Drift	Drift
	us gpm		psi*	5gpa	7.5gpa	10gpa	12.5gpa	Reduction	Reduction	Reduction
-015	0.13 0.15	30 40	30 40	15.4 17.7	10.2 11.8	7.7	6.1 7.1	DX20-015 #42220-015	DX40-015 #42240-015	DX60-015 #42260-015
-013	0.13	50	50	19.8	13.2	8.9 9.9	7.1	Fine Spray	Fine Spray	Fine Spray
	0.18	60	59	21.7	14.5	10.9	8.7	ER20-015	ER40-015	ER60-015
	0.20	70	69	23.5	15.7	11.7	9.4	#42120-015	#42140-015	#42160-015
	Flow us gpm	Boom	Tip psi	7.5gpa	10qpa	n 10" spa 12.5gpa	15gpa	Drift Reduction	Drift Reduction	Drift Reduction
	0.17	30	29	13.6	10.2	8.2	6.8	DX20-02	DX40-02	DX60-02
-02	0.20	40	39	15.7	11.8	9.4	7.9	#42220-02	#42240-02	#42260-02
	0.22	50 60	49 59	17.6 19.2	13.2 14.4	10.5 11.5	8.8 9.6	Fine Spray ER20-02	Fine Spray ER40-02	Fine Spray ER60-02
	0.26	70	69	20.8	15.6	12.5	10.4	#42120-02	#42140-02	#42160-02
	Flow	Boom	Tip			n 10" spa	cing) @	Drift	Drift	Drift
	us gpm 0.21	psi 30	psi 29	7.5gpa 16.9	10gpa 12.7	12.5gpa 10.2	15.0gpa 8.5	Reduction DX20-025	Reduction DX40-025	Reduction DX60-025
-025	0.25	40	39	19.6	14.7	11.7	9.8	#42220-025	#42240-025	#42260-025
	0.28	50	49	21.9	16.4	13.1	10.9	Fine Spray	Fine Spray	Fine Spray
	0.30	60 70	58 68	23.9 25.9	18.0 19.4	14.4 15.5	12.0 12.9	ER20-025 #42120-025	ER40-025 #42140-025	ER60-025 #42160-025
	Flow	Boom	Tip			n 10" spa		Drift	Drift	Drift
	us gpm	psi	psi	10gpa	12.5gpa	15gpa	17.5gpa	Reduction	Reduction	Reduction
-03	0.26	30 40	29 39	15.2 17.5	12.1 14.0	10.1 11.7	8.7 10.0	DX20-03 #42220-03	DX40-03 #42240-03	DX60-03 #42260-03
-03	0.29	50	48	19.6	15.7	13.0	11.2	Fine Spray	Fine Spray	Fine Spray
	0.36	60	58	21.4	17.2	14.3	12.3	ER20-03	ER40-03	ER60-03
	0.39	70	68	23.2	18.5	15.4	13.2	#42120-03	#42140-03	#42160-03
	Flow us gpm	Boom psi	Tip psi	12.5gpa		n 10" spa 17.5gpa	20gpa	Drift Reduction	Drift Reduction	Drift Reduction
	0.34	30	28	15.9	13.3	11.4	10.0	DX20-04	DX40-04	DX60-04
-04	0.39	40	37	18.4	15.3	13.1	11.5	#42220-04	#42240-04	#42260-04
	0.43	50 60	47 56	20.6 22.5	17.1 18.8	16.1	12.9 14.1	Fine Spray ER20-04	Fine Spray ER40-04	Fine Spray ER60-04
	0.51	70	66	24.3	20.3	17.4	15.2	#42120-04	#42140-04	#42160-04
	Flow	Boom	Tip			n 10" spa		Drift	Drift	Drift
	us gpm 0.41	psi 30	psi 27	15gpa 16.3	17.5gpa 14.0	20gpa 12.2	22.5gpa 10.9	Reduction DX20-05	Reduction DX40-05	Reduction DX60-05
-05	0.48	40	36	18.8	16.2	14.1	12.6	#42220-05	#42240-05	#42260-05
	0.53	50	45	21.1	18.1	15.8	14.1	Fine Spray	Fine Spray	Fine Spray
	0.58	60 70	54 63	23.1	19.8 21.4	17.3 18.7	15.4 16.6	ER20-05 #42120-05	ER40-05 #42140-05	ER60-05 #42160-05
	Flow	Boom	Tip			n 10" spa		Drift	Drift	Drift
	us gpm	psi	psi	17.5gpa	20gpa	22.5gpa	25gpa	Reduction	Reduction	Reduction
-06	0.48	30 40	26 35	16.5 19.0	14.4 16.6	12.8 14.8	11.5 13.3	DX20-06 #42220-06	DX40-06 #42240-06	DX60-06 #42260-06
	0.63	50	43	21.2	18.6	16.5	14.9	Fine Spray	Fine Spray	Fine Spray
	0.69	60	52	23.3	20.4	18.1	16.3	ER20-06	ER40-06	ER60-06
	0.74 Flow	70 Boom	61 Tip	25.1 Sprayer	Speed (o	19.5 n 10" spa	17.6 cina) @	#42120-06 Drift	#42140-06 Drift	#42160-06 Drift
	us gpm	psi	psi	22.5gpa		27.5gpa	30gpa	Reduction	Reduction	Reduction
	0.62	30	24	16.3	14.6	13.3	12.2	DX20-08	DX40-08	DX60-08
-08	0.71	40 50	32 39	18.8 21.0	16.9 18.9	15.4 17.2	14.1 15.7	#42220-08 Fine Spray	#42240-08 Fine Spray	#42260-08 Fine Spray
	0.87	60	47	23.0	20.7	18.8	17.2	ER20-08	ER40-08	ER60-08
	0.94	70	55	24.8	22.4	20.3	18.6	#42120-08	#42140-08	#42160-08
	Flow us gpm	Boom	Tip psi			n 10" spa 32.5gpa		Drift Reduction	Drift Reduction	Drift Reduction
	0.73	30	21	15.7	14.4	13.3	12.4	DX20-10	DX40-10	DX60-10
	0.84	40	28	18.2	16.6	15.4	14.3	#42220-10	#42240-10	#42260-10
	0.94 1.03	50 60	35 42	20.3	18.6 20.4	17.2 18.8	16.0 17.5	Fine Spray ER20-10	Fine Spray ER40-10	Fine Spray ER60-10
	1.11	70	49	24.0	22.0	20.3	18.9	#42120-10	#42140-10	#42160-10
	Flow	Boom	Tip			n 10" spa		Drift Redux	Drift Redux	Drift Redux
-125	us gpm 0.97	psi 40	psi 24	30gpa 19.3	35gpa 16.5	40gpa 14.5	45gpa 12.9	DX20-125 #42220-125	DX40-125 #42240-125	DX60-125 #42260-125
120	1.09	50	30	21.5	18.5	16.2	14.4	Fine Spray	Fine Spray	Fine Spray
	1.19	60	36	23.6	20.2	17.7	15.7	ER20-125	ER40-125	ER60-125
	1.29	70_	42	25.5	21.9	19.1	17.0	#42120-125	#42140-125	#42160-125

For larger sizes of nozzles in narrow-angle varieties, please contact Wilger. As spot-spraying systems continue to develop, Wilger expects to have a variety of nozzles developed in turn to support the new improvements to maximize effectiveness.

*NOTE: This chart takes into account a relative pressure drop through commonly used PWM solenoids to illustrate some potential flow restriction for larger spot spraying nozzles.

Spot & Broadcast spraying with the same nozzles? Consider **COMBO-JET**® 80° Nozzles

What is optical spot spraying?

Optical spraying systems, or spot spraying based on optical feedback is used for a variety of purposes and with different modes of action.

Spray on Green

Optics identify 'green' targets in field, and sprays them.

- Pre-plant spraying to clear out established weeds
- Spraying fungicide on plants in field, ignoring dirt.
- Using modes of actions to manage resistant weeds.
- Foliar fertilizer applications on plant only

Green on Green

Optics & computer differentiate plants in field and spray target plants only.

- Spraying weeds ONLY, avoiding planted crop.
- Spraying crop with fungicide, ignoring weeds.
- Spraying different weeds with different chemicals

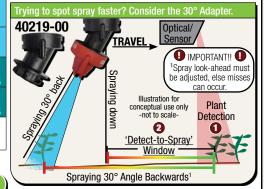
While the potential benefits of Green on Green provide a great deal of flexibility & neans to use cost-prohibitive herbicide regimens, the means to differentiate plants a application time and development of the computing power and learning mechanisms are continually under development.

Effectively through development of the narrow angle nozzles, there is a relative sweet spot for consistent coverage and maintaining a reasonable level of driftable fines.

Since optical/spot sprayers are typically subject to minimized speeds and narrow spacing, Wilger developed the DX series as a sweet-spot between drift reduction and coverage in those nozzle sizes and angles.

Are they still PWM-spray system compatible? Absolutely!

Faster nozzle pattern generation, faster shut-off, and increased time with an optimal spray pattern are ways to tune in your spot spraying application.


The Insta-jet insert helps improve responsiveness of your nozzle by significantly reducing the amount of cavity space within a nozzle body outlet, such that there is less cavity space to charge between pulses. This means faster ON and OFF time of the nozzle's spray, providing more optimal spraying time.

The INSTA-JET insert snaps into any COMBO-JET nozzle¹ to handle as one piece.

¹except UR series, or nozzles using adapters that do not allow for use of a snap-in strainer/insta-jet snap-in insert

COMBO-JET_® Cap Adapters

Order #####-V0 for viton o-ring assemblies

Wilger manufacturers a variety of adapters to adapt Wilger nozzles to other brands of nozzle bodies (e.g. Teejet, Hypro, Arag, etc), provide new functions, or a mix thereof. All adapters self-align cap to common nozzle offset angle.

COMBO-JET 50/30 Adapter

40442-00 COMBO-JET outlet to 30° & 50° front/back COMBO-JET outlets -Quarter Turn-

COMBO-JET 30/30 Y-Adapter

40440-00 COMBO-JET outlet to dual 30° front/back COMBO-JET outlets -Quarter Turn-

30° COMBO-JET to COMBO-JET

40219-00 COMBO-JET to COMBO-JET, 30° incline (front or back) -Quarter Turn-

COMBO-JET DOUBLE-DOWN

40441-00 COMBO-JET outlet to dual COMBO-JET outlets straight down -Quarter Turn-

Square Lug to COMBO-JET

40204-00 Converts Square Lug (e.g. Teejet/Hypro) Outlet to COMBO-JET -TWIST-LOCK-

Square Lug to DOUBLE-DOWN

40206-00 Converts Square Lug Outlet to COMBO-JET Double-Down Outlets -TWIST-LOCK-

COMBO-JET to Square Lug

40203-00 Converts COMBO-JET Outlet to Square Lug (e.g. Teejet/Hypro) -Quarter Turn-

30° COMBO-JET to Square Luq

40220-00 COMBO-JET to Square Lug, 30° incline (front or back) -Quarter Turn-

JACTO to COMBO-JET

40207-00 Converts Jacto Outlet to COMBO-JET -Quarter Turn-

AGRIFAC to COMBO-JET

40205-00 Converts Agrifac Outlet to COMBO-JET Easy nozzle sleevesnaps into Combo-Jet caps

AGRIFAC to DOUBLE-DOWN

40203-00 + 40441-00 Converts Agrifac Outlet to Double COMBO-JET -Quarter Turn-

AGRIFAC to 30/30 Y-Adapter

HARDI to COMBO-JET

40213-00 Converts Agrifac Outlet to COMBO-JET Y-adapter Outlets -TWIST-LOCK-

Y-Adapter or 'Double-Down' mode?

To split up a high volume, coarse spray nozzle into two more meaningful spray qualities. Y-adapter is excellent for vertical growing targets. double-down is better into thick canopies.

Read the 'Tip Guide for Double Nozzle Spraving'

PWM-Ready *Double Nozzle Spraving*

Just add the two nozzle sizes together for your PWM nozzle flow For example: MR110-04 + SR110-05

*PWM solenoid pressure drop would e based on combined size (e.g

40202-00 HARDI Outlet to COMBO-JET -Semi-permanent snap on adapter-

Radialock Slotted Caps & ER spray tip capsules (80° & 110°)

Wilger manufacturers caps for using flanged spray tip capsules onto any Combo-Jet nozzle outlets. Gasket is required.

3/8" Slot 3/8" For 3/8"

7/16" Wide Slot

HARDI Tip Slot

HARDI

²May be available in colors*: **Black (-05), Yellow (-04), G Red (-01)** *Check factory availability of non-black colors. ·04), Green (-03), Willia (+02),

ER Stainless spray tips with 3/8" capsules

40170-04

Optimal Height 30"

Optimal Height 20"

Use with #40269-05 + #40160-00 gasket

Looking for narrower 20°, 40° or 60° ER nozzle capsules? Contact Wilger.

80° ER Tip ER80-005 ER80-007 ER80-01 ER80-015 ER80-02 ER80-025 ER80-03 ER80-04 ER80-05 ER80-06 ER	100 01 FD00 015 FD00 00 FD00 005 FD00 00 FD00 05 FD00 06	
	100-01	ER80-08
Part # 40170-005 40170-007 40170-01 40170-015 40170-02 40170-02 40170-03 40170-04 40170-05 40170-06 401	170-01 40170-015 40170-02 40170-025 40170-03 40170-04 40170-05 40170-06	40170-08
110° ER Tip - ER110-01 ER110-015 ER110-02 ER110-02 ER110-03 ER110-04 ER110-05 ER110-06 ER	110-01 ER110-015 ER110-02 ER110-025 ER110-03 ER110-04 ER110-05 ER110-06	ER110-08
Part # - 40169-01 40169-015 40169-02 40169-02 40169-03 40169-04 40169-05 40169-06 40160-06 40160-06 40160-06 40160-06 40160-06 40160-06 40160-06 40160-06 40160-06 40160-06 40160-06 40	169-01 40169-015 40169-02 40169-025 40169-03 40169-04 40169-05 40169-06	40169-08

For flow rate & spray quality charts, and more information on ER spray tips, reference the 80° and 110° spray nozzle charts.

COMBO-JET_® Caps, Adapters & Strainers

Wilger manufacturers a variety of caps that are used for metering flow rates (through hose barb, push-in tube, or streamer caps) or used as accessories for other spraying or plumbing functions.

Plug Caps

40272-B5

Caps unused Combo-Jet nozzle body outlets

ар
Cap Only
40272-05

Hose Barb Caps

40260-00

40261-00

Stainless

Steel for

Chemical

Spraying

40250-00

Mesh Size

100 mesh

25 mesh

Hose barb caps can be used as manifold plumbing parts or for metering flow.

	Hose Barb Caps	
Barb Size	FKM O-ring Assy	Cap Only
1/8"	40420-B5	40420-05
1/4"	40422-B5	40422-05
3/8"	40424-B5	40424-05
1/2"	40426-B5	40426-05

To use cap for metering, order CAP ONLY, with o-ring and 40285-## metering orifice.

COMBO-JET Cap O-rings

13mm x 3mm o-ring

for COMBO-JET®

Caps & Spray Tips

COMBO-JET Snap-in Strainers Combo-jet strainers snap into a metering orifice or cap for an assembly that handles as 'one-piece'

40251-00 40249-00

40249-00

40248-00

Slotted Strainer Stainless Mesh Color

use 100 mesh for -02 nozzles o

#40251-00

#40250-00 use 50 mesh for -025 or larger nozzles

Adapter for non-metering caps Seal adapter is used to keep o-ring in place if metering orifice

is NOT used

Slotted

Plastic

Strainer

for

Push-in-Tube Caps

Quick connect tube caps seal on the outside diameter of a tube, and used as manifold plumbing parts or for metering flow.

Quick Connect/Push-in-tube Caps					
Tube Size (O.D.) FKM O-ring Assy Cap Only					
1/4"	40435-B5	40435-05			
5/16"	40437-B5	40437-05			
3/8"	40436-B5	40436-05			

To use cap for metering, order CAP ONLY, with o-ring and 40285-## metering orifice.

Threaded Outlet Adapters

Combo-Jet Cap with NPT-F threaded port

Th	readed Outlet Cap	ps
Thread Size	FKM O-ring Assy	Cap Only
1/8" NPT-F	40277-B5	40277-05
1/4" NPT-F	40273-B5	40273-05
45° 1/4" NPT-F	40274-B5	40274-05

For applications that do not required liquid metering orifices (e.g. plumbing manifolds), the -B5 is an assembly that includes an o-ring (#40260-00), seal adapter (#40261-00 in lieu of orifice), and cap.

Hose Drop & Extension Caps 40260-V0

Hose Drop Caps are used to feed or spray down below a canopy to minimize crop contact.

Outlet	Length	Part #
Combo-Jet	2"	40210-00
to Combo-Jet	5"	40211-00
Combo-Jet	16"	22026-00
Combo-Jet Cap to 1/4" NPT-M	24"	22036-00
	36"	22038-00
1/4 INF 1-101	48"	22048-00
	2.25"	5.25

Other styles of Hose Drop Assemblies using threaded inlets are also available. Find them in the DRY BOOMS section of the catalog.

Fertilizer Streamer Caps

3-hole Fertilizer Streamer Caps [Molded]

3-hole fertilizer streamer (FS3) nozzle improves stream consistency across higher pressure ranges

Color-coded, Single part number ordering

VISIT PAGE 28-29 for both FS3 Fertilizer Streamer Caps & metering orifice charts

2-hole Streamer Caps [Drilled]

2-hole streamer caps are used to stream liquid fertilizer for ~10" coverage

3-hole Streamer Caps [Drilled]

3-hole streamer caps are used to stream liquid fertilizer

	~6.7	<u></u>
me	er Caps [CAP	ONLY]
	2-Hole Cap	3-Hole Cap

Drilled Fertilizer Streamer Caps [CAP ONLY]						
Cap Size	Cap Size Flow Range 2-Hole Cap 3-Hole Ca					
Small	0.05 - 0.4 us gpm	40432-047	40433-047			
Medium	0.2 - 1.0 us gpm	40432-086	40433-067			
Large	0.5 - 3.0 us gpm	40432-104	40433-104			
Large	0.0 0.0 do gpiii	T0702 107	10100 101			

Ordering [Drilled] Streamer Caps

For drilled streamer cap assembly, order:

- 1. Metering Orifice (40285-## series)*
- 2. Streamer cap (2 or 3 hole, sized to flow range
- 3. O-ring seal (40260-00 or 40260-V0)
- 4. [Optional] Slotted Strainer

*For selecting metering orifices to fit your application, use Tip Wizard, consult flow charts, or use other tools available at www.wilger.net

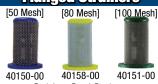
Square Lug Nozzle Outlet Caps - Only for Square Lug Nozzle Body Outlets (Teejet, Hypro, etc)

40197-05 Square Lug nozzle outlet plug cap

3/8" Slot Cap

40248-00

Blue


40159-05 For 3/8" wide flanged spray tips

Threaded Cap

45° 1/4" NPT-F thread

Flanged Strainers

Stainless Steel Strainers for Square-Lug Caps & Nozzles

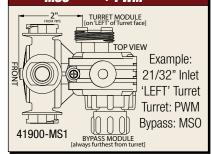
Cap Gaskets

Gaskets are required to seal all Square Lug Caps

A R T

WILGER Dual-Spray 4+1 [DS41] Nozzle Bodies

Dual Spray 4+1 [DS41] Nozzle Bodies


The DS41 nozzle body is the next generation of compact nozzle body. Many significant design changes have been made to improve turret position, durability and strength, and reliability in some of the most challenging environments in spraying.

		DS41 Nozzle Bodies with 5/16" Bolt Mount Upper Clamp			er Clamp	
Boom			Turret Control Module Configuration & Assembly Par			oly Part#
Pipe/Tube	Nozzle Outlet	Inlet Hole	Module	-00	-MS1	-NM
Size	Configuration	Size	Position ¹	MSO on BOTH	MSO on Bypass	No modules on
0,20			1 00111011	Bypass & Turret	No Module on Turret	Bypass & Turret
		3/8" Inlet	LEFT	41902-00	41902-MS1	41902-NM
	4 CJ (Turret) + 1 CJ (Bypass)	3/6 IIIIet	RIGHT	41903-00	41903-MS1	41903-NM
		High Flow	LEFT	41900-00	41900-MS1	41900-NM
1"		21/32" Inlet	RIGHT	41901-00	41901-MS1	41901-NM
(1.315" OD)		3/8" Inlet	LEFT	41912-00	41912-MS1	41912-NM
	4 SqLug (Turret)	3/6 IIIIet	RIGHT	41913-00	41913-MS1	41913-NM
	+ 1 CJ (Bypass)	High Flow	LEFT	41910-00	41910-MS1	41910-NM
		21/32" Inlet	RIGHT	41911-00	41911-MS1	41911-NM

DS41 LEFT & RIGHT bodies are dictated by position of turret module relative to the front faceplate. For ease of ordering, recommended to order 50% LEFT & RIGHT for sprayer retrofits. Bypass' module is always opposite the turret's module.

Ordering DS41 as -MS1 with MS0 (bypass) + PWM (Turret)

Given the DS41 is ultra compact, the 30/50 was designed to spin on the turret with the 30° angle forward¹.

> 40442-00 Perfect forcereal fungleftle application

¹When using the 50° nozzle angle forward, removal of the adapter will be required due to the compact nature of the DS41.

COMBO-JET Nozzle Bodies

Hinged Clamp for easy installation

Compact body sits directly under the boom. Perfect for tight boom frames & heavy

PWM solenoids

Nozzle Bodies can swap right/left orientation to avoid sprayer boom frame

Debris-cleaning 3/8" inlet slots for less residue buildup

Bodies can be equipped with any combination of control modules, including AIR-OFF, PWM solenoid, Manual ON/OFF or spring-based diaphragm check valves

Nozzle Bodies available in **Combo-Jet or Square Lug styles** (Teejet/Hypro/etc) with 1, 2 or 3 nozzle outlets

Single Outlet COMBO-JET® Nozzle Bodies

Robust and cost effective nozzle bodies for sprayers and used on wet boom liquid fertilizer kits.

Boom Pipe	Inlet Size	Outlets	Style	Part#
3/4" (1.05" OD)	3/8"	1 CJ	Check Valve	40611-00
			Check Valve	40621-00
1"	3/8"	1 CJ	Manual On/Off	40621-MS
(1.315" OD)			No Module	40621-NM
	21/32"	1 CJ	No Module	40626-NM

The COMBO-JETO Adventege

40611-P15 Single Outlet w/ 15PSI check valve red) and hose barb cap

Commonly used in liquid fertilizer metering manifolds mounted on plumbed pipe

KWIKSTOP™ stops Run-on

KWIKSTOP™passively purges air trapped in the sprayer boom.

Nozzles are fed from the top of the pipe

Less air means Less Nozzle Run-on & Drips

Dual Outlet COMBO-JET® Swivel Bodies

Robust and cost effective nozzle bodies for sprayers to switch up to two nozzles by simply rotating the outlet. Safer and easier than handling contaminated nozzles.

3					
Boom Pipe	Inlet Size	Outlets	Style	Part#	
3/4" (1.05" OD)	3/8"	2 CJ	Check Valve	40612-00	
			Check Valve	40622-00	
1"	3/8"	2 CJ	Manual On/Off	40622-MS	
(1.315" OD)			No Module	40622-NM	
	21/32"	2 CJ	No Module	40627-NM	

High/Low PSI Check Valves

Replace assembly part # ending '-00' to order 4PSI or 15PSI check valves

4 PSI [BLUE]

-00 [Standard]

15 PSI -P15 [RED]

Triple Outlet COMBO-JET® Swivel Bodies

Robust and cost effective nozzle bodies for sprayers to switch up to three nozzles by simply rotating the outlet.

Saler and easier than nanding containinated nozzles.					
Boom Pipe	Inlet Size	Outlets	Style	Part#	
3/4" (1.05" OD)	3/8"	3 CJ	Check Valve	40613-00	
			Check Valve	40623-00	
1"	3/8"	3 CJ	Manual On/Off	40623-MS	
(1.315" OD)			No Module	40623-NM	
	21/32"	3 CJ	No Module	40628-NM	

ectively retrofit a sprayer to a PWM spray system

Nozzle bodies with raised inlets to passively purge air trapped at the top of a sprayer boom pipe, reducing nozzle run-on & improving boom shut-off response times.

1" KWIKSTOP™ Nozzle Bodies

Boom Pipe	Outlets	Style	Part#
4.11	1 CJ	Check Valve	40631-00
(1.315" OD)	2 CJ	Check Valve	40632-00
(1.315 (U)	3 CJ	Check Valve	40633-00

Smooth Clamp Bodies

Swivel bodies have been switched to a standard bolt-mount hinge clamp.

Contact Wilger for a cross-reference chart for the smooth clamp part numbers and their bolt-mount replacement.

Nozzle Body Specifications

Operating Pressure	10*-100PSI
Operating Freedom	
Single Outlet Flow Rate	2.1 us gpm @ 5PSI pressure drop 3.1 us gpm @ 10PSI pressure drop
Dual Swivel Flow Rate	1.7 us gpm @ 5PSI pressure drop 2.7 us gpm @ 10PSI pressure drop
Triple Swivel Flow Rate	1.6 us gpm @ 5PSI pressure drop 2.6 us gpm @ 10PSI pressure drop
O-ring Seals	FKM (viton avail.)
Materials	SS (screws) Polypropylene (body) Celcon (lower swivel)

Square Lug Swivel Nozzle Bodies & Accessories

Single Outlet Square Lug Nozzle Bodies

Robust and cost effective nozzle bodies for sprayers and used on wet boom liquid fertilizer kits.

Boom Pipe	Outlets	Style	Part#
3/4"	1 Square Luq	Check Valve	40651-00
(1.05" OD)	1 Square Lug	No Check	40140-00
	1 Square Lug	Check Valve	40661-00
1"		Manual On/Off	40661-MS
(1.315" OD)		No Module	40661-NM
		No Check	40141-00

KWIKSTOP™ stops Run-on

KWIKSTOP™passively purges air trapped in the sprayer boom.

Nozzles are fed from the top of the pipe

Less air means Less Nozzle Run-on & Drips

Dual Outlet Square Lug Nozzle Bodies

Robust and cost effective nozzle bodies for sprayers to switch up to two nozzles by simply rotating the outlet. Safer and easier than handling contaminated nozzles.

		Ü	
Boom Pipe	Outlets	Style	Part#
3/4" (1.05" OD)	2 Square Lug	Check Valve	40652-00
1"		Check Valve	40662-00
(1.315" OD)	2 Square Lug	Manual On/Off	40662-MS
(1.315 OD)		No Module	40662-NM

High/Low PSI Check Valves

Replace assembly part # ending '-00' to order 4PSI or 15PSI check valves

-00 [BLUE] [Standard]

-P15'

[RED]

Triple Outlet Square Lug Nozzle Bodies

Robust and cost effective nozzle bodies for sprayers to switch up to three nozzles by simply rotating the outlet. Safer and easier than handling contaminated nozzles.

Boom Pipe	Outlets	Style	Part#
3/4" (1.05" OD)	3 Square Lug	Check Valve	40653-00
4.0		Check Valve	40663-00
(1.315" OD)	3 Square Lug	Manual On/Off	40663-MS
(1.313 OD)		No Module	40663-NM

Nozzle Body Specifications

Operating Pressure	10*-100PSI
Single Outlet Flow Rate	2.1 us gpm @ 5PSI pressure drop 3.1 us gpm @ 10PSI pressure drop
Dual Swivel Flow Rate	1.7 us gpm @ 5PSI pressure drop 2.7 us gpm @ 10PSI pressure drop
Triple Swivel Flow Rate	1.6 us gpm @ 5PSI pressure drop 2.6 us gpm @ 10PSI pressure drop
O-ring Seals	FKM (viton avail.)
Materials	SS (screws) Polypropylene (body) Celcon (lower swivel)

1" KWIKSTOP™ Square Lug Nozzle Bodies

Nozzle bodies with raised inlets to passively purge air trapped at the top of a sprayer boom pipe, reducing nozzle run-on & improving boom shut-off response times.

Boom Pipe	Outlets	Style	Part#
1"	1 Square Lug	KWIKSTOP	40671-00
(1.315" OD)	2 Square Lug	KWIKSTOP	40672-00
	3 Square Lug	KWIKSTOP	40673-00

Swivel Body Replacement Parts - For ALL TYPES Swivel Bodies

O-ring Repair Kit, CJ Nozzle Bodies, FKM (6 Bodies) 40166-05 O-ring Repair Kit, CJ Nozzle Bodies, VITON® (6 Bodies) 40193-02 SCREW, Hi-Lo, #10 x 3/4" SS [for Hinged Swivel Bodies]

40155-23 Molded Diaphragm, FKM (replaces 40155-07 + 20455-04) 20455-07 O-ring, 3/8" inlet seal, #110, FKM, Duro 70 20455-04 O-ring, Pressure Pad, Replacement (pairs with 40155-07)

Diaphragm Rubber Seal, EPDM (use w/ #20455-04) 40155-12 Diaphragm Rubber Seal, VITON® (use w/ #20455-04)

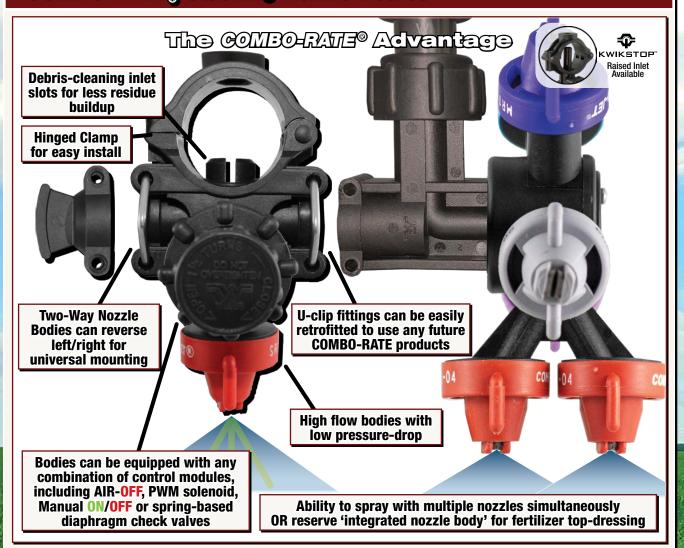
3/8" Nozzle body inlet o-ring

20455-07

40193-02

CJ Nozzle Body Repair Kits* (up to 6 bodies)

BUNA-N Kit incl 6x Pressure Pad O-rings #20455-04 24x Inner-body O-rings #40155-09 #40155-13 #40155-07 6x Diaphragms #40155-12 de either a pair of #20455-04 & #40155-07, or #40155-23. Both serve the same function.



弖

COMBO-RATE Stacking Nozzle Bodies

COMBO-RATE® Side-fed Saddles

Robust side-fed saddles mount with a inlet hole on the side of a sprayer boom, with a female combo-clip port for CR bodies

Boom Size	Inlet Size	Part#
3/4" Pipe (1.05" OD)	3/8" inlet	41203-00
1" Pipe	3/8" inlet	41200-00
(1.315" OD)	9/16" inlet	41201-00
2" Pipe (2.375" OD)	9/16" inlet	41206-00

COMBO-RATE® II Top or Bottom-fed Saddles

Combo-Rate II saddles can be fed with an bottom inlet or flipped and fed from a hole in the top of a boom pipe to passively purge air trapped in a sprayer boom.

41472-00

on two sides can be used to attach any Combo-Rate parts

CRII One-Way Stacking Saddles

Boom Size	Inlet Size	Part#
1/2" Pipe (0.84" OD)	3/8" inlet	41471-00
1" Pipe (1.315" OD)	3/8" inlet	41475-00
	9/16" inlet	41477-00
	21/32" inlet	41479-00

CRII Two-Way Stacking Saddles

Inlet Size	Part#
3/8" inlet	41472-00
3/8" inlet	41476-00
9/16" inlet	41478-00
	3/8" inlet

COMBO-RATE_® II Integrated Nozzle Bodies

One-Way Stacking Integrated COMBO-RATE ® II Nozzle Bodies

One-way stacking COMBO-RATE nozzle bodies stack to the left with one open u-clip port. Typically using a manual on/off module, these bodies can be used to spray separately than turrets/bodies or simultaneously from multiple nozzles. Multiple nozzle spraying can be an effective way to improve coverage in high volume applications to make a more meaningful mix of droplets.

Nozzle Body Specifications

WIK^STOP

Raised Inlet Available

Double-Down

Turret Arm

#40155-13

#41502-V6 #40155-12

#41502-04

#41502-05

#41502-09

41502-13*

HOW THEY WORK: Manual ON/OFF Check Valves

Since Combo-Rate nozzle bodies stack, a manual way to turn off low to certain outlets is required.

When the knob is OPEN, it acts as a standard 10 PSI check valve. When the knob is CLOSED, it urns off flow to that nozzle outlet ONLY. It does not effect other stacked nozzle bodies.

Operating Pressure	10*-100PSI 2(80PSI for air-off)			
3/8" Inlet Single Outlet Flow Rate	2.1 us gpm @ 5PSI pressure drop 3.1 us gpm @ 10PSI pressure drop			
9/16" Inlet Single Outlet Flow Rate	2.2 us gpm @ 5PSI pressure drop 3.5 us gpm @ 10PSI pressure drop			
21/32" Inlet High Flow Single Outlet Flow Rate	3.0 us gpm @ 5PSI pressure drop 4.0 us gpm @ 10PSI pressure drop			
O-ring Seals	FKM (viton avail.)			
Materials	SS (screws) Glass-Reinforced Polypropylene (body)			
* 10PSI minimum with 10PSI check valve				

				Nozzle Bo	dies with 5/16"	Bolt Mount Up	per Clamp
	Sch40 Pipe		Chaptring		Module Desci	ription & Part#	
Boom Size	Outside Diameter	Inlet Size	Stacking Direction	Dia. Check Valve	Manual ON/OFF	Air-Off Operated ²	PWM (w/o Nut)**
1/2"	0.84"	3/8" Inlet	One-Way	41411-00	41413-00	41415-00	41417-00
3/4"	1.05"	3/8" Inlet	One-Way	41421-00	41423-00	41425-00	41427-00
28mm	28mm	3/8" Inlet	One-Way	41481-00	41483-00	41485-00	41487-00
1"	1.315"	3/8" Inlet	One-Way	41431-00	41433-00	41435-00	41437-00
'	1.315	9/16" Inlet	One-Way	41441-00	41443-00	41445-00	41447-00
1" KWIKSTOP	1.315"	3/8" Inlet	One-Way	41451-00	41453-00	41455-00	41457-00

Two-Way Stacking Integrated COMBO-RATE OII Nozzle Bodies

Two-way stacking COMBO-RATE nozzle bodies stack to both directions, with two open u-clip ports. Typically using a manual on/off module, these bodies can be used to spray separately than turrets/bodies or simultaneously from multiple nozzles. Multiple nozzle spraying can be an effective way to improve coverage in high volume applications to make a more meaningful mix of droplets.

TWO-WAY 1" Boom Pipe	
	The same
TWO-WAY 41434-00 41438-00 41414-	00

				Nozzle Bodies with 5/16" Bolt Mount Upper Clamp			
	Sch40 Pipe		011-1		Module Descr	ription & Part#	
Boom Size	Outside	Inlet Size	Stacking Direction	Dia. Check	Manual	Air-Off	PWM
	Diameter		Direction	Valve	ON/OFF	Operated ²	(w/o Nut)**
1/2"	0.84"	3/8" Inlet	Two-Way	41412-00	41414-00	41416-00	41418-00
3/4"	1.05"	3/8" Inlet	Two-Way	41422-00	41424-00	41426-00	41428-00
28mm	28mm	3/8" Inlet	Two-Way	41482-00	41484-00	41486-00	41488-00
1"	1.315"	3/8" Inlet	Two-Way	41432-00	41434-00	41436-00	41438-00
1		9/16" Inlet	Two-Way	41442-00	41444-00	41446-00	41448-00
1" High Flow	1.315"	21/32" Inlet	Two-Way	41462-00	41464-00	41466-00	41468-00
1" KWIKSTOP	1.315"	3/8" Inlet	Two-Way	41452-00	41454-00	41456-00	41458-00

Stacked Outlet Specification

Operating Pressure	10*-100PSI 2(80PSI for air-off)	
3/8" Inlet Two Outlets Used Flow Rate	3.2 us gpm @ 5PSI pressure drop 5.0 us gpm @ 10PSI pressure drop	
9/16" Inlet Two Outlets Used Flow Rate	3.6 us gpm @ 5PSI pressure drop 6.2 us gpm @ 10PSI pressure drop	
21/32" Inlet High Flow Two Outlets Used Flow Rate	4.6 us gpm @ 5PSI pressure drop 9.0 us gpm @ 10PSI pressure drop	
O-ring Seals	FKM (viton avail.)	
Materials	SS (screws) Glass-Reinforced Polypropylene (body)	
* 10PSI minimum wi	th 10PSI check valve	

Combo-Rate Body, Turret Replacement & Auxiliary Parts

40200-02 O-ring, CR Inter-body, #206, FKM O-ring, 3/8" Nozzle Body Inlet Stem, #110, FKM 20455-07 O-ring, 9/16" Nozzle Body Inlet Stem, #206, FKM 40200-02 41361-02 0-ring, 21/32" Nozzle Body Inlet Stem, #115, FKM 20460-04 U-clip, 304SS 41331-03 Screw, Hi Lo, SS, CRII Body Hinge Clamp Screw (for 2016+ newer) 41285-00 Adapter, CR Plug [Covers unused Combo-Rate port]

Plug, Inner CR2 port plug [fits inside side port of CRII bodies]

41502-04 CR Turret Outlet Arm, Combo-Jet Outlet 41502-10 CR Turret Outlet Arm, Square Lug Outlet CR Turret Outlet Arm, Double-Down Combo-Jet Outlet 41502-13 41502-05

CR Turret Outlet Arm, Plug Diaphragm, Molded, FKM (Replaces #40155-07 + 20455-04) 40155-23 CRII Nozzle Body O-ring Repair Kit, FKM (6 Bodies) 41100-16 CRII Nozzle Body O-ring Repair Kit, VITON® (6 Bodies) 41502-11 CR Turret Repair Kit, FKM (2 Bodies)

41502-12 CR Turret Repair Kit, VITON® (2 Bodies) Plug, CR Clamp to plug 21/32" inlet hole on 1" pipe Requires #20455-07 O-Ring

41592-00

Bolt-Mount Clamp for any 1.315" OD.

41593-00 21/32" Inlet Plug Clamp

Plua

Turret Arm Plug

Combo-Jet® Turret Arm

41502-04*

COMBO-RATE® II Body Repair Kits* (For up to 6 bodies): #41100-15 or -16

4x Turret Core O-rings	#41502-06
2x Diaphragm	#40155-07
2x Combo-Jet Outlet Arr	
2x Turret Plugs	#41502-05
2x Turret Lock Clips	#41502-09
(Standard Kit inclu

10x Turret Outlet O-rings #20455-07

Square Lug Turret Arm

41502-10*

des viton Kit incl. 6x Pressure Pad O-rings #20455-04 #20455-V4 6x Inter-body O-rings 6x Diaphragms #40200-V2 *40155-07 *Repair kits may include a pair(s) of #40155-07 and #20455-04, or a single #40155-23. Both ser

WWW.WIGER.NET

41286-00

COMBO-RATE, Stacking Thru & End Bodies

COMBO-RATE® Thru Bodies

Thru bodies stack onto any existing combo-clip female port and adds an additional combo-clip female port for further expansion.

COMBO-RATE Thru Body						
[Connects to any Combo-Rate female ports]						
Dia. Check Manual Air-Off PWM						
Valve	Operated ²	(w/o nut)**				
Valve ON/OFF Operated ² (w/o nut)** 41100-00 41110-00 41125-00 41135-00						

COMBO-RATE® End Bodies

End bodies stack onto any existing combo-clip female port to add a nozzle body that can be equipped for any spraying needs.

COMBO-RATE End Body					
[Connects to any Combo-Rate female ports]					
Dia. Check	Manual	Air-Off	PWM		
Valve ON/OFF		Operated ²	(w/o nut)**		
41101-00	41111-00	41126-00	41136-00		

CR Swivel End Bodies

End bodies that can be fixed in 15° increments for fence-row & crop adapted spraying applications. Attaches to any combo-clip female port.

COMBO-RATE End Body					
[Connects to any Combo-Rate female ports]					
Dia. Check Manual Air-Off				PWM	
	Valve	ON/OFF	Operated ²	(w/o nut)**	
	41102-00	41112-00	41127-00	41137-00	

Combo-Rate Stacking Body Specification

Operating Pressure 10*-100PSI 2(80PSI for air-off)

O-ring Seals FKM (viton avail.)

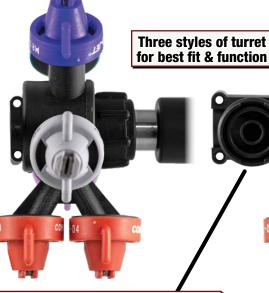
Materials Glass-reinforced Polypropylene

Flow Rate 2.1 us gpm (end & thru), 1.6 us gpm (swivel body)

COMBO-RATE Turrets

The COMEO-FAME TURRED Adventege

Common U-clip connections for all Combo-Rate parts


Each turret arm is o-ring sealed to minimize dust & debris entry Module threads are compatible with most PWM spray systems

RAVEN

Front Turret

Side Turret

Bodies can be equipped with any combination of control modules, including AIR-OFF, PWM solenoid, Manual ON/OFF or spring-based diaphragm check valves

Multiple options for Single CJ, **Square Lug, or Double-Down outlets**

Double-Down Turrets allow for dual nozzle spraying for better overage in high volume & fungicide applications

COMBO-RATE turrets provide you options to configure a desired turret configuration, allowing it to be a universal turret for any brand of sprayer or nozzles.

COMBO-RATE_® Stacking Component Examples

Side-Fed saddle with a thru and end body

Same parts, but different configuration to solve sprayer issues

CRII integral body with end body and turret

Swivel End Bodies For Fence-row nozzles

COMBO-RATE Turrets - cont'd

Sprayers have different nozzle requirements, due to spacing, boom frame design & interference, so Wilger has three styles of turrets that can be used to fit any situation.

COMBO-RATE Front Turrets

Front turrets stack onto any COMBO-RATE nozzle body, mounting on the common u-clip port. Turrets are available in a variety of outlet and module styles, which are mounted onto the 'front' face of the turret.

	Description & Part #				
Number of Outlets	Dia. Check Valve	Manual ON/OFF	Air-Off Operated	PWM (w/o nut)*	
3 CJ Outlet	41503-00	41513-00	41543-00	41533-00	
4 CJ Outlet	41504-00	41514-00	41544-00	41534-00	
5 CJ Outlet	41505-00	41515-00	41545-00	41535-00	
3 CJ Outlet + 2 SQ Lug Outlet	41505-32*	41515-32*	41545-32*	41535-32*	
Double-Down + 4 CJ Outlet	41506-00	41516-00	41546-00	41536-00	

PWM solenoid or other control module to function

HOW THEY WORK: Manual ON/OFF Valves

Since Combo-Rate nozzle bodies stack a manual way to turn off flow to certain outlets is required.

When the knob is standard 10 PSI check valve

When the knob is CLOSED, it turns off ow to that nozzle outlet ONLY. It does not effect other stacked nozzle bodies.

Module Installation & Re-installation

During installation, ensure knob is in OPEN orientation. Otherwise the binding nut cannot seal the check valve module Ensure the orientation tabs (green) are seated properly.

COMBO-RATE Side Turrets - Reversible

Side turrets stack onto any COMBO-RATE nozzle body, mounting on the common u-clip port. Turrets are available in a variety of outlet and module styles, which are mounted onto the side of the turret with a reversible module stem.

		Description	n & Part #	
Number of Outlets	Dia. Check Valve	Manual ON/OFF	Air-Off Operated	PWM (w/o nut)*
3 CJ Outlet	41603-00	41613-00	41643-00	41633-00
4 CJ Outlet	41604-00	41614-00	41644-00	41634-00
5 CJ Outlet	41605-00	41615-00	41645-00	41635-00
3 CJ Outlet + 2 SQ Lug Outlet	41605-32	41615-32	41645-32	41635-32
Double-Down + 3 CJ Outlet	41606-00	41616-00	41646-00	41636-00

Side-Turret Core Replacement kit for Teejet Threaded PWM Solenoid 41602-07 Side-Turret Core Replacement kit for Arag /Hypro Threaded PWM Solenoid 41602-09

Kit for Hypro/Arag PWM Solenoids PWM Solenoids

Reversing Orientation

Switch a side turret module stem from left to

COMBO-RATE Top Turrets

Top turrets stack onto any COMBO-RATE nozzle body, mounting on the common u-clip port. Turrets are available in a variety of outlet and module styles, which are mounted onto the top of the turret. Ideal for use with bulky PWM solenoids in tight booms.

		Description	n & Part #	
Number of Outlets	Dia. Check Valve	Manual ON/OFF	Air-Off Operated	PWM (w/o nut)*
3 CJ Outlet	41803-00	41813-00	41843-00	41833-00
4 CJ Outlet	41804-00	41814-00	41844-00	41834-00
5 CJ Outlet	41805-00	41815-00	41845-00	41835-00
3 CJ Outlet + 2 SQ Lug Outlet	41805-32	41815-32	41845-32	41835-32
Double-Down	41806-00	41816-00	41846-00	41836-00

Solenoid gasket (Seats on wilger modules to seal on solenoid base)

41133-03

Module points upwards to keep large solenoids (e.g. Hawkeye II) out of the way of other boom parts.

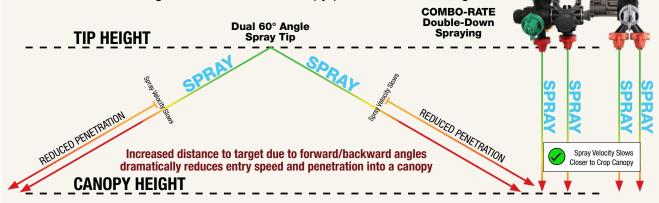
Open module thread must have PWM solenoid or other control module to function

Double-Down Turrets

Double nozzles from a single turret outlet. Great for double-down PWM spraying.

GER:NET

WWWA',


Increasing Coverage with Crop-Adapted Spraying

Different crops require different kinds of spray coverage for best efficacy, so changing how spray is deposited can often provide beneficial results in both coverage and application efficacy. It starts with adapting how the crop is being targeted, ensuring maximizing spray deposition on the target area, and minimizing spray on lessideal or wasted areas.

For example, using two spray tips **straight down** can provide better penetration through thick canopies, allowing for better interior canopy coverage; while two angled spray patterns **forward & backward** can lend to spray coverage at the top canopy foliage or on both front/back of a cereal head.

Why use two nozzles straight down, and not a multi-angle spray tip?

Further distance to target can mean less canopy penetration with angled

COMBO-RATE gives you better penetration and coverage for a more consistent application into thick canopy crops.

Examples of *Tough to Penetrate* Crop Canopies

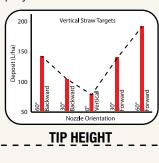
for COMBO-JET

& COMBO-RATE

for Non-Wilger

Bodies

Picking Nozzles for Double-Down Spraying?


Applicators often already have nozzles to be used in pairs for double down spraying.

E.g. 5 + 10 gal/acre nozzles could be used for 15 gal/acre. Visit the dual tip spraying guide in the catalog for more info.

What about spraying vertical targets that don't have a dense canopy?

Angled spray for vertical growing targets (e.g. cereal heads) can provide superior coverage

Spraying a vertical target is different than spraying into a canopy. Spraying forward/backward with a nozzles produces spray that can travel horizontal, making it more effective to cover vertical targets *at suitable boom heights*.

Vertical Target Spraying e.g. Applying Fungicide on Wheat

Illustration for conceptual use only

Dry Boom Nozzle Bodies & Accessories

Compact Nozzle Bodies

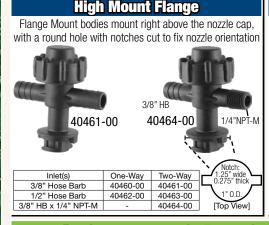
Compact Bodies have many uses, as in-line check valves on planting equipment, estate sprayers, dry boom nozzle bodies, or other situations that would require a compact check valve with a Combo-Jet cap outlet.

a Combo-Jet outlet

3/4"HB x 3/8" NPT-M

5/8" Square-Mount Dry Boom Swivel Nozzle Bodies with 3/8" NPT-F feed

Square-Mount nozzle bodies attach to a boom frame with 5/8" square mounts, and are fed by a 3/8" NPT-F inlet.



High Mount Dry Boom Nozzle Bodies with Hose Shank Feed

40311-00

40312-00

40313-00

One-Way	Two-Way
40450-00	40451-00
40452-00	40453-00
-	40454-00
	40450-00 40452-00

Sq Mt w/o check Square Mount Compact Bodies without check valves 40406-00

Inlet(s)	One-Way	Two-Way
1/2" HB	40406-00	40407-00

5/8" Square Mount Stainless Steel Clamps

Wilger manufactures a series of 5/8" square mount clamps that are used with compatible nozzle bodies. Refer to the CLAMPS pages to find the full listing of available stainless steel clamps

B

L

ß

R T

Dry Boom Nozzle Bodies & Accessories - cont'd

Rotating Adjustable Swivel Bodies & Hose Drop Assemblies

Hose Drop Adapters

Nylon hose drops are used to feed bodies to spray down below a canopy to minimize crop contact

Hose Drop Adapters

Inlet	Outlet	Length	Part #
		16"	22021-00
	1/4"	24"	22031-00
1/4"	NPT-M	36"	22037-00
NPT-M		48"	22047-00
	1/4"	16"	22025-00
	NPT-F	24"	22035-00

22021-00

Hose Drop & Extension Caps

Outlet	Length	Part #]
Combo-Jet	2"	40210-00]
to Combo-Jet	5"	40211-00] :
Combo-Jet	16"	22026-00	1
Cap to 1/4" NPT-M	24"	22036-00	1
	36"	22038-00]
	48"	22048-00] [
			2

Adjustable Swivel Bodies [360° Lockable Rotation Front/Back]

Swivel Bodies can be rotated front to back 360° use for Crop Adapted Spraying or other targeting

			(Control Module	S
	Inlet Size	Outlet(s)	Without Dia.	Dia. Check	Manual On/Off
	1/4"	Single	40225-00	40231-00	40237-00
	NPT-M	Double	40226-00	40232-00	40238-00
	1/4"	Single	40227-00	40233-00	40239-00
	NPT-F	Double	40228-00	40234-00	40240-00
	1/4"NPT-M w/ 1/4"	Single	40229-00	40235-00	40241-00
	NPT-F	Double	40230-00	40236-00	40242-00
	3/8" HB w/ 5/8" Sq. Mount	Single	40243-00	40244-00	40245-00

40237-03 Diaphragm Manual Shut-off Assembly, Replacement (for adjustable swivel bodies only)

Crop Adapted Spraying

Using adjusted nozzle angles, swath and direction to better adapt to specific crop targets to maximize efficacy or minimize

360° Independent Outlets

Low-Mount Compact Bodies - Contact Factory for availability. (Non-stocked item)

11/16" Thread Mount Low Mount Bodies

A low mounting compact body that attaches to a sprayer boom frame with an 11/16" threaded nut.

10366-00

40367₋00

40300-00			4	0307-00
	Inlet Size	One-Way [Left]	One-Way [Right]	Two-Way
	3/8" HB	40360-00	40361-00	40362-00
	1/2" HB	40365-00	40366-00	40367-00
	3/4" HB	40370-00	40371-00	40372-00

40155-21 Module Retainer, Replacement 40199-00 Lock Nut. 11/16" Thread

40155-21

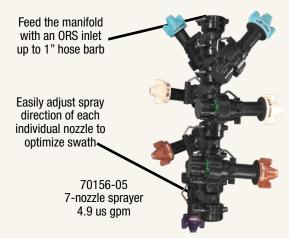
40199-00

5/8" Square Mount Low Mount Bodies

A low mounting compact body that attaches to a sprayer boom frame with an common 5/8" square mounting port.

40385-00

40382-00


	Inlet Size	One-Way [Left]	One-Way [Right]	Two-Way	Three-Way
Г	3/8" HB	40380-00	40381-00	40382-00	40383-00
Г	1/2" HB	40385-00	40386-00	40387-00	40388-00
	3/4" HB	40390-00	40391-00	40392-00	N/A

40155-21 Module Retainer Replacement

COMBO-RATE Boomless Sprayer Manifold Assemblies

Boomless sprayers are used to spray areas not accessible by traditional boomed sprayers, such as ditches, roadways, pastures, and commercial/industrial areas.

COMBO-RATE boomless sprayers can be configured in hundreds of ways depending on mounting, size, and flow requirement.

Example Assembly	Flow Rate (us gal/min)	Part#
O Norrio Decretos	1.3 us gal/min	70154-01
3-Nozzle Boomless Spraying Manifold	2.6 us gal/min	70154-03
Spraying Manilold	5.8 us gal/min	70154-06
	2.3 us gal/min	70155-02
5-Nozzle Boomless	2.9 us gal/min	70155-03
Spraying Manifold	5.8 us gal/min	70155-06
	11.5 us gal/min	70155-12
	3.9 us gal/min	70156-04
7-Nozzle Boomless	4.9 us gal/min	70156-05
Spraying Manifold	9.6 us gal/min	70156-10
	19.5 us gal/min	70156-20

Adiustable swath distance charts online

Stainless Steel Clamps for Sprayer & Liquid Fertilizer Appl.

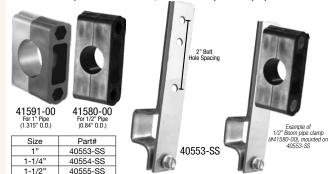
5/8" Square Mount Clamps

5/8" Square Mount clamps attach a nozzle body with 5/8" square mount to a tube or pipe

Mount Size	Standard 5/8" Square Mount Clamp (SS)		Adjustable High-Reach 5/8" Square Mount Clamp (SS)
	for Round Tube	for Square Tube	for either Round Tube or Square Tube
1/2"	40320-SS	N/A	3/4" Tube Extra High Reach
3/4"	40321-SS	40325-SS	40343-SS
1"	40322-SS	40326-SS	3/4" to 1-1/4"
1-1/4"	N/A	40327-SS	40341-SS
1-1/2"	N/A	40328-SS	1-1/2" to 2"
2"	N/A	40330-SS	40342-SS
40341-04 Replacement Lock Clip, Plastic			

3/4" Square Mount Clamps for Nozzle Bodies

Sq. Tube Size	Part#
1"	41261-SS
1-1/4"	41262-SS
1-1/2"	41263-SS
2"	41264-SS



Two-Hole Bolt-Mount Clamps for Sq. Tube

Three-Hole Bolt-Mount Clamps for Sq. Tube

Three-Hole Clamps for Sprayer Boom Tube, Nozzle Body & Utility Mounting Boom tube clamps are sold in halves, so two are required for proper use.

Z

B

Nozzle Body Accessories & Replacement Parts

Combo-Rate Control Modules & Nuts

Wilger manufacturers a few styles of control modules that can be swapped between any Combo-Rate or Combo-Jet nozzle bodies

Inter-body Strainers

Inter-body strainers are used in-between Combo-Rate nozzle bodies to catch burrs or debris during the break-in period of new sprayers, or to further protect_PWM solenoids

Diaphragm Seals

Rubber Diaphragms are used in ALL control modules to seal the flow within the check valve

All-in-One Diaphragm, used in parts made after 2019

40155-23 (FKM)

The bottom of the control modules have a groove for a pressure pad o-ring or all-in-one diaphragm

Two-piece diaphragm & pressure pad o-ring

Diaphragm

Pressure pad O-Ring

40155-07 (EDPM) 40155-12 20455-04 (Buna-N) 20455-V4

Either rubber diaphragm can be typically used, but ensure to replace diaphragm in proper orientation and remove pressure pad o-ring if 40155-23 diaphragm is used. For low pressure & flow, the two-piece may perform better.

0-ring Seals

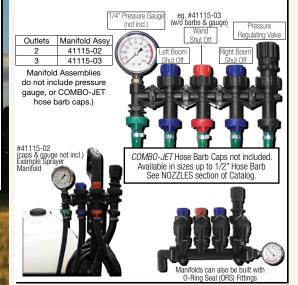
O-ring seals are commonly used on many component parts.

FKM material is standard, viton is available.

0-ring	Description/Where Used	FKM#	VITON #
13mm x 3mm	COMBO-JET spray tips	40260-00	40260-V0
#009	CR Top-turret faceplate	41802-04	40802-V4
#015	ORS Metering orifices	40225-04	40225-05
#106	9/16" Nozzle body inlet	51204-04	51204-V4
#108	Module pressure pads	20455-04	20455-V4
#110	3/8" Nozzle body inlet	20455-07	20455-V7
#115	21/32" Nozzle body inlet	41361-02	41361-v2
#116	1/2" QN100 connections	25120-02	25120-V2
#118	ORS Strainer cartridges	-	20576-V4
#119	EFM Sensor housing seal	20580-12	20580-13
#121	CR Turret core seals	41502-06	41502-V6
#203	5/16" Push-In Tube O-ring	20457-03	20457-v3
#206	CR Stacked body side seal	40200-02	40200-v2
#212	0-ring Seal (ORS) fittings	20460-03	20460-15
#214	Boom end flush valve core	-	25175-08
#219	QN100 0-ring seal	25160-02	25160-V2

Air Tees & Reducers

Tees and Reducers that can be used to couple tube for air or liquid supply


20455-00 20456-00

Fitting Type	Description	Part#
Tee	3/8" x 3/8" x 1/4" O.D.	20455-00
iee	5/16" x 5/16" x 1/4" O.D.	20457-00
Reducer	3/8" x 1/4" O.D.	20456-00

Estate Sprayer Manifolds, Accessories & Adapters

Estate Sprayer Manifold Assemblies

Wilger manifold assemblies are pre-built manifolds based on common requirements. COMBO-RATE components can be used to expand or change any manifold.

0	Pressure	Manual On/Off	1/4" NPT-F for
Connection	Regulating Valve	Check Valve	Pressure Gauge
Thru Body	41130-00	41110-00	-
End Body	44104 00	4444 00	
Combo-Clip Male	41131-00	41111-00	-
End Body			41251-00
Combo-Clip Female	_	_	41231-00

Combo-Clip (CC) Adapters & 3/4" Sq. Mount Clamps

Combo-Clip connections are compatible with all Combo-Rate Fittings and Nozzle Bodies

Outlet	Part #
Plug	41285-00
1/4" NPT-F	41275-00
3/8" NPT-F	41276-00
1/4" NPT-F	41251-00
1/4" NPT-M	41252-00
3/8" NPT-M	41253-00
90° CC-M	41250-00
1/4" NPT-F	41255-00
3/8" NPT-F	41256-00
	Plug 1/4" NPT-F 3/8" NPT-F 1/4" NPT-F 1/4" NPT-M 3/8" NPT-M 90° CC-M 1/4" NPT-F

Clamps for 3/4" Square-Mount Adapters

Square Tube	
Size	Nozzle Body Clamps
1"	41261-SS
1-1/4"	41262-SS
1-1/2"	41263-SS
2"	41264-SS

Combo-Clip Adapters can be used to convert a traditional dry boom sprayer to use cutting edge COMBO-RATE turrets & fittings

41256-00 w/ 3/4" Sq. Mount Clamp

Regulating & Manual On/Off Manifold Valves

When in 'ON' position,

41130-00 41131-00 41110-00 41111-00 41251-00 Ensure to visit the NOZZLES section of the catalog for the full listing of **COMBO-JET** Caps

1/2" & 1" Stainless Steel Tube For Quick-Nut & Quick-Flange Fittings

Wilger Stainless Steel Tubing is engineered for high performing modern sprayers. The high flow sprayer boom tube shares outside dimensions of commonly-used sch40 pipe, but with dramatically reduced weight.

Custom tube lengths, spacing and inlet holes are available by order.

Larger Inside Diameter Inside diameter is larger to

accommodate higher flow rates

Rolled End for Cost-Effective Manufacturing

Tube ends are rolled instead of threaded to minimize downtime, and thread leaking/failure

For Recirculating Booms

Compatible boom fittings & tubing for building recirculating booms

1" Stainless Steel Tubing Shares 1" sch40 pipe

outside diameter (1.315" OD.) with larger 1.25" inside diameter

1.315" 1.25 0.D. I.D.

Lighter 1" Boom = Less Fuel weighs 66% of aluminum weighs 23% of sch40 pipe Lighter than hose

1/2" Stainless Steel Tubing

Shares 1/2" sch40 pipe outside diameter (0.84" OD.) with larger 0.788" inside diameter

Lighter 1/2" Boom = Less Fuel

weighs 80% of aluminum weighs 28% of sch40 pipe Lighter than hose

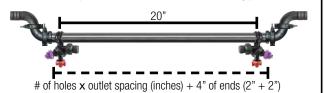
Sprayer Tube Shipping Consideration - Length

Depending on requirement for sprayer tube length, shipping costs are generally less expensive for tubes that are less than 9' (108") in length.

Pre-punched Outlet Spacing

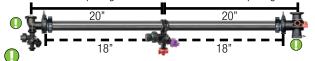
Sprayer tubes are commonly pre-punched to 20" nozzle spacing, but also available in pre-punched to 10", 15", 30" or custom spacing as required.

Picking the Correct Style of Tube End & Length


Different sprayer boom configurations require different combinations of lengths of tube.

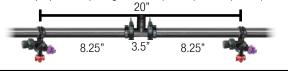
To simplify the boom configuration & planning process, consider starting with tubes with the least amount of extra material on the ends. This will reduce dead-ends that may trap chemical residue. With the minimal tube length in mind (# of holes on tube x hole spacing), then consider different tube-end configurations.

Some fittings shorten the tube lengths required (as they include the last nozzle), reducing the # of holes required.

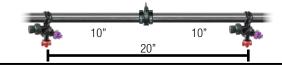

Standard Tube Ends (2")

Tubes that have 2" of tube after the last nozzle body are commonly used with QN100 or QF100 plumbing parts.

Super Compact Nozzle Body Ends (18")


The CR BEFV & QF100 w/ CR clamp integrates the last nozzle for a super compact boom end. The tube should be 2" shorter than the intended nozzle spacing to maintain consistent nozzle spacing.

NOTE: For each CR BEFV/Integrated Elbow, tube will be 1 inlet hole "short"


Center-fed Section Ends (8" or 8.25")

Tubes that are center-fed with Tees require a pair of longer tube sides to maintain proper 20" spacing with a 4" (QN100) or 3.5"(QF100) wide tee.

10" Ends for Tube to Tube SST

For situations that require two smaller tubes to be joined tube to tube, the 10" ends maintain 20" spacing between the last nozzle bodies

Select a Type of Plumbing Parts

NEW Quick-Flange (QF100) Fittings

A series of flanged adapters that convert either a rolled-end tube (like SST) or other 1.315" OD tube/pipe to a common 1" flange and tool-free clamp system

Quick Nut (QN100 & QN50) Fittings

A series of quick couplers that use the rolled end to connect to a variety of sweep sprayer fittings to maximize flow capacity and boom hygiene.

Wilger Catalog - Updated July 2024

Quick-Flange Fittings & Fluid Supply System

The Quickflenge Adventage

Perfect Recirc. **Booms**

Stronger Compact **Fittings**

Compact Boom End **Options**

No Threads or Sealant Required

Cutting out Boom Contamination

Retrofitting & Flange Compatibility

Fittings available for complementing any sort of sprayer boom & more.

CAN BE OUTFITTED FOR:

1" sch40 Pipe (1.315" 0D)

Wilger Stainless Tubing

Case Thin Wall Stainless

Compact & Robust Sweep Fittings

Sweep fittings reduce turbulence & pressure loss, producing a sprayer that is capable of higher flow rates with less

Recirculation Made Easy

Many options for any recirculating boom

Sweep flange fittings to maximize flow through a sprayer

Quick-Flange Adapters for Different Sprayer Tubing Types

Adapting Quick-Flange Fittings to any 1" PIPE, 1" SST, or Case® TWS Boom Tube

QF100 Fittings can be seamlessly retrofitted or adapted to any 1" Pipe, QN SST, or TWS Booms to a 1" Flange Fitting.

Case® Thin-Wall Stainless (TWS) to Quick-Flange 3-piece Flange

27312-00 adapter end QF100 x 1-1/4" HB, 90° 27316-SK gasket is available Case® is a registered trademarks of CNH Industrial America LLC.

27343-00

Three-piece flange adapter snaps over the boom pipe and tightens with a binding nut, sealing with a TWS to QF100 Seal. *For greater anti-twist resistance, the skirted

Wilger Stainless Steel Tube (SST) to Quick-Flange

Three-piece flange adapter snaps over the boom pipe and tightens with a binding nut, sealing with a SST to QF100 Seal.

27312-00 3-piece flange adapter end **27343-00** QF100 x 1-1/4" HB. 90°

Through-Pipe to CR BEFV & Thru Elbow

Through-Pipe Flange End Adapter Super Flexible Up to 3/4" of excess tube material can fit into a CR BEFV

27382-00 QF100 through-pipe adapter kit

27360-00 CR BEFV for with flange : Two half-clamps mount on a boom tube, securing to the

tube-end adapter. The result is a flanged tube end with up to 1/4-1" of excess tube material sticking out of the adapter. This excess length slides into a CR BEFV (or Elbow w/ top clamp #2737#-00 series), providing greater flexibility.

Cut-Pipe to Quick-Flange

Compatible with any Quick-Flange or common-flange fittings.

Two half-clamps mount on a boom tube, securing to the cut pipe-end adapter. The result is a common-flange end.

Not shown: An additional compact 2-piece pipe end adapter is also available for Case Thin-wall stainless tube, and Wilger SST. It is not intended for robust, mobile applications, but remains an option for adapting tube to a flange end.

8

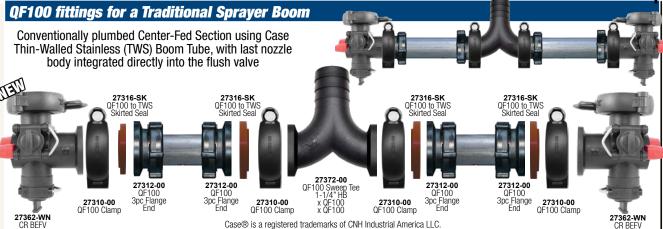
0

When planning to build a sprayer boom with Wilger's Stainless Steel Tube, follow these steps to break down the process and engineer the best performing sprayer boom possible.

Determine tube lengths & spacing required for each section. Simply count the number of outlets on each required boom tube between each fold, accounting for separated sections (if required).

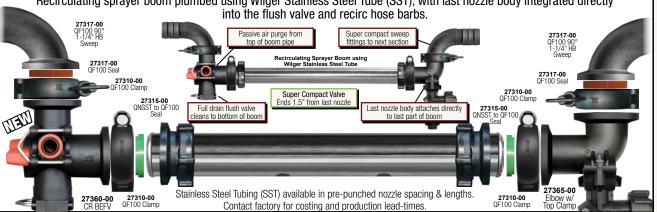
STEP(2) Split up nozzle sections based on boom type, or to minimize boom tube length (e.g. 11 nozzles max).

For Recirculating (R) Sprayer Booms: Anticipate keeping sections made with as few boom tubes as possible, as plumbing fittings will only be on the either end of the tube (aside from any tube-to-tube joints on the same section)


For Standard (S) Sprayer Booms: Anticipate splitting sections in half, allowing for a center-fed sweep tee. providing optimal pressure to each nozzle in each sprayer section.

Determine whether any boom end nozzle bodies (like Combo-Rate Boom End Flush Valve nozzle body) are being used, as they may require different lengths (as they encompass the last outlet on a sprayer boom) Determine the tube end spacing depending on the fittings used.

CR BEFV requires 18" tube end. Tube Joint requires 10" tube end. Regular fittings requires 2" end.


For example, a 5-section recirculation sprayer, with 72 outlets (on 20" spacing) using Combo-Rate End Flush Valve Bodies

	SECTION 1		SECTION 2	SECTION 3		SECTION 4	SECTION 5
STEP ① Section sizing	11 nozzles	20 no	zzles	10 nozzles	20 no	zzles	11 nozzles
STEP 2 Tube Lengths	11 hole	10 hole + 10	O hole joined	10 hole	10 hole + 10	O hole joined	11 hole
STEP 3 Specialty Boom End Considerations	11 hole -2 (CR BEFV) 9 hole tube	10 hole -1 (CR BEFV) 9 hole tube + joint	10 hole -1 (CR BEFV) 9 hole tube + joint	10 hole -2 (CR BEFV) 8 hole tube	10 hole -1 (CR BEFV) 9 hole tube + joint	10 hole <u>-1 (CR BEFV)</u> 9 hole tube + joint	11 hole <u>-2 (CR BEFV)</u> 9 hole tube
STEP 4 Tube/End Lengths to Order	9 hole tube with 18" End (CR BEFV) & 18" End (CR BEFV)	9 hole tube with 18" End (CR BEFV) & 10" End (joint)		8 hole tube with 18" End (CR BEFV) & 18" End (CR BEFV)	18" End (CR BEFV)	9 hole tube with 10" End (joint) & 18" End (CR BEFV)	9 hole tube with 18" End (CR BEFV) & 18" End (CR BEFV)

QF100 fittings for a Recirculating Sprayer Boom

Recirculating sprayer boom plumbed using Wilger Stainless Steel Tube (SST), with last nozzle body integrated directly

Quick-Flange Tube-End Adapters, Seals & Kits

QF100 Tube-End & Pipe-End Adapters, Seals & Kits

Gasket seals mate different tube & QF100 fittings together. Ensure correct seals are identified for each connection.

3pc End Adapter

2pc End Adapter

Wilger SST

27313-00

for non-mobile

applications.

requiring low

2 halves secure over pipe, affixed with binding nut

Max Pressure

100psi/7bar

Seals Used

Wilger SST uses flared taper gasket

27315-SK [skirt] 27315-00 [std]

Case TWS uses stepped or

skirted

Adapters & Kits

Boom End/T	Adapter/Ki			
Wilger SST r OR Case TWS fl	[3pc] 27312-00 [2pc] 27313-00			
Cut pipe end	27381-00			
Through pipe e	end kit [9pc]	27382-00		
NPT-F	1/2" NPT-F	27357-00		
Threaded Pipe 3/4" NPT-F		27358-00		
Adapters	1" NPT-F	27359-00		
· · · · · · · · · · · · · · · · · · ·				

QF100 Gasket Seals

Seal Type	Standard	Skirted*
Sear Type	Seal Part#	Seal Part#
SST Tube x Flange	27315-00	27315-SK
TWS Tube x Flange	27316-00	27316-SK
Flange x Flange	27317-00	27317-SK
Wilger SST to SST	27318-00	27318-SK
Case TWS to TWS	27319-00	27319-SK

*Skirted gaskets are used when more robust sealed connections are required

Tube to Flange End Seals

Gasket seal against a formed tube end profile

Tube to	Standard	Skirted*		
Flange Seals	Seal Part#	Seal Part#		
SST Tube	27215 00	27315-SK		
x Flange	2/3/15-00	2/313-3K		
TWS Tube	27216-00	27316-SK		
x Flange	2/310-00	27310-3K		
*Skirted gaskets are used when more				

robust connections are required

SST Tube x Flange

27316-00 Standard

TWS Tube x Flange 27316-SK Skirted Gasket*

MATERIAL: FKM

Looking for 27316-02? It's been replaced by #27316-SK

pressure Case TWS over SST

Flange to Flange Fitting Seal

Gasket seals common 1" flange fitting ends

Flange	Standard	Skirted*
Seal	Seal Part#	Seal Part#
Flange x Flange	27317-00	27317-SK

Tube End to Tube End Seals

Gasket seals between two butt ends of tube

	tivo butt	oriae or	LUDU
	Tube to Tube	Standard	Skirted*
	Seals	Seal Part#	Seal Part#
	Wilger SST	27318-00	27318-SK
	to SST		
	Case TWS	27319-00	27319-SK
	to TWS		1

Through Pipe Adapter Kit

27382-00 For any 1.315" OD pipe/tube

Most Robust

Use with CR BEFV or Through-Pipe Elbows

Quick-Flange Clamps

Compact & robust clamps for easy installation & adjustment with hinging bolt. Compatible with common 1" flange fittings.

Poly Clamp	Part#
Butterfly Nut & Bolt	27310-00
Nut & Bolt	27311-00
	and the same of th

Butterfly Nut Flange Clamp 27310-00

Nut & Bolt Flange Clamp 27311-00

Polypropylene Clamp & Stainless Hardware

QF100 Cap

Threaded Pipe Adapter

For male national pipe threaded (NPT) pipes

Available in 1/2", 3/4" & 1" NPT-F sizes

27359-00

Threaded

Uses QF100 Standard 27317-00 [std]

QF100 Adapters & Caps

QF100 Plugs, and other adapters for auxiliary connections to QF100 fittings

Size/Style	Description	Part#
Plug Cap	QF100 Plug Cap	27353-00
Female	QF100 x 1/2" NPT-F	27357-00
Thread	QF100 x 3/4" NPT-F	27358-00
Adapter	QF100 x 1" NPT-F	27359-00
Male Thread	QF100 x QN100-M Thread	27351-00
Adapter	QF100 x TWS-M Thread	27352-00

27358-00

Quick-Flange Fittings & Parts

QF100 Elbows & Hose Barb Fittings

Compact & high flow sweep fittings for less pressure loss & higher flow capability for a better performing sprayer boom.

Size/Style	Description	Part#
Flange	Elbow, 90°, Compact	27324-00
x Flange	Elbow, 45°, Compact	27326-00
1"	QF100 x 1" HB, Straight	27331-00
Hose Barb	QF100 x 1" HB, 45° Sweep	27332-00
x QF100	QF100 x 1" HB, 90° Sweep	27333-00
1-1/4"	QF100 x 1-1/4" HB, Straight	27341-00
Hose Barb	QF100 x 1-1/4" HB, 45° Sweep	27342-00
x QF100	QF100 x 1-1/4" HB, 90° Sweep	27343-00

27341-00 1-1/4" HB, Straight

27343-00 1-1/4" HB

27342-00

Sweep Tees

Compact & high flow sweep fittings for less pressure loss & higher flow capability for an improved sprayer boom.

Tee Fittings	Sweep Tee	Regular Tee
lee Fittings	Part#	Part#
QF100 x QF100 x QF100	27371-00	27321-00
QF100 x QF100 x 1-1/4" HB	27372-00	27322-00
QF100 x QF100 x 1" HB	27373-00	27323-00

QF100 x 1-1/4" HB

Sweep **Fittings**

Compact tees for flat bottom drainage.

27321-00

Regular Tees

TETT

COMBO-RATE Boom End Flush Valve (CR BEFV)

The Better Boom End Nozzle Body & Valve

A boom end flush valve with two Combo-Rate ports for attaching a fence-row nozzle body, turret, or any COMBO-RATE fittings.

Valve version	Part#
Base Model w/o plugs	27360-00
Recirc Model w/ plugs	27361-00
Non-Recirc model w/ plugs	27362-00
Non-recirc w/ butterfly nut	27362-WN

COMBO-RATE u-clip port x2 Full Flush

Boom End Flush Valve

O-ring Seal outlet [compatible with any Wilger ORS fittings]

Easily adaptable

for any configuration

Designed for Recirculating Booms Designed to incorporate an in-line flange

fitting for easy recirc configuration.

boom pipe reducing nozzle run-on

Super Compact Boom Ends The last nozzle body, flush valve and flange outlet combined in one piece

Remove Dead Spots in the boom Boom ends directly with last nozzle body and flush valve to ensure boom hygiene

> **Designed for** Recirculating

Booms

QF100 Flange Elbow with Nozzle Body Upper Clamp

Flange Elbows w/ Body Clamp

Compact flanged elbows with built-in nozzle body clamp

, ,			,	
	Compact Elbow		Offset Ext.]
Flange to Flange	Module Orientation		Elbow	
	Outward	Inward	Inward]
3/8" Inlet	27365-00	27366-00	27370-00]
21/32" High Flow Inlet	27367-00	27368-00	27369-00]

Super Compact

The offset flange allows for free use of flange fittings for recirculating sprayers ahead of the last nozzle body. Nozzle bodies would be 'inward' facing.

'Through Pipe' Elbow w/ Body Clamp

Use with #27382-00 'Through Pipe' Boom End Adapters ONLY

#27382-00 to	Module Orientation		
Flange	Outward Facing	Inward Facing	
3/8" Inlet	273 <u>7</u> 5-00	273 <u>7</u> 6-00	
21/32" Inlet	273 <u>7</u> 7-00	273 <u>7</u> 8-00	

1" Quick-Nut (QN100) Boom Fittings & Stainless Steel Tube

The QuickNut Fifting & SST Advantage

Lighter Booms - Wilger SST

weighs 66% of aluminum weighs 23% of sch40 pipe Lighter than hose

Lower Cost

compared to other pipe plumbed sprayer booms

Recirculating Booms

Compatible boom fittings & tubing for building recirculating booms

Less Chemical Residue

compared to hose-plumbed sprayers

High Flow Boom Pipe

Maintains 1" pipe outside diameter, but inside diameter flows like 1-1/4'

25161-01

25160-03

25171-00

QN100 Fittings for a Conventional Sprayer Boom

Contact Wilger for Custom Boom Tube & Hole Configurations for your sprayer boom.

[CANADA] Wilger Industries Ltd. 1 (833) 242-4121 info@wilger.net

[USA] Wilger Inc. 1 (877) 968-7695 WilgerESC@WilgerESC.com

Quick-Nut (QN100) Joint 25160-02 to Hose Barb

Example of a few possible configurations of 1" Quick-Nut (QN100) Sprayer Fittings

Stainless Tube (SST) to Boom End Flush Valve (BEFV)

25175-LV0 25160-02 25171-00

Sweep Tee to Stainless Tube (SST) 41591-00

QN100 Flared End

Sweep Tee to Hose Barb

25160-02

25160-01

Long Handle

25172-00 Sweep Tee

MUSICIANA

QN100 Connectors & Components

Easy to use boom end fittings and connectors to adapt 1" Wilger Stainless Steel Tubing (SST) to ON100 fittings

whigh stainless steel rubing (551) to divide hittings.			
Component	Description	Part#	
SS Tube End	Female Thread End, 2pc	25170-00	
Adapters	Male Thread End, split ring	25171-00	
Quick Nut	Nut with QN100-F Thread	25160-03] ,
Plug	QN100 x Plug Cap	25163-01	۱
O-ring for QN100	#219 O-ring, FKM	25160-02	
Connections	#219 O-ring, viton	25160-v2	
Threaded	QN100 x 3/4" NPT-F Thread	25164-01	
Adapters	1" NPT-F x QN100M Bushing	25137-00	
Boom Tube	Half Clamp, for 1" SST (1.31" OD)	41591-00	
Clamps	Half Clamp, for 1-1/4" Tube	41590-00	١.
	BEFV Cover Cap	25175-10] 4
Replacement	BEFV Seal Repair Kit (2 valves)	25175-11	
Parts	BEFV Handle, Long	25175-13	
	BEEV Handle Short	25175-03	

For QN100 Connections

25160-02

25160-03

25164-01

QN100 Tee Fittings

Compact & lightweight sweep tees for any sprayer boom configuration

	9
Description	Part#
QN100 Flare x QN100M x QN100M	25172-00
1" Hose x QN100M x QN100M	25168-00
1-1/4" Hose x QN100M x QN100M	25169-00

QN100 Hose Barb Fittings

Compact & lightweight hose barb fittings for any sprayer boom configuration.

Size/Style	Description	Part#
1" HB	QN100 x 1" HB, Straight	25166-01
x QN100	QN100 x 1" HB, 90° Sweep	25167-01
1-1/4"	QN100 x 1-1/4" HB, Straight	25160-01
Hose Barb	QN100 x 1-1/4" HB, 45° Sweep	25162-01
x QN100	QN100 x 1-1/4" HB, 90° Sweep	25161-01

QN100 & 1" NPT Boom End Flush Valves

Compact valve for full-drain flushing of booms.

Type	Description	Part#
001400	QN100 BEFV, Short Handle	25175-V0
QN100	QN100 BEFV, Long Handle	25175-LV0
1" NPT-F	1" NPT BEFV, Short Handle	25176-V0
I NPI-F	1" NPT BEFV, Long Handle	25176-LV0

25175-10

25175-03

1/2" Quick-Nut (QN50) Boom Fittings & Stainless Steel Tube

QN50 Fittings for a Conventional Sprayer Boom

Contact Wilger for Custom Boom Tube & Hole Configurations for your sprayer boom. [CANADA] Wilger Industries Ltd.

1 (833) 242-4121 info@wilger.net

[USA] Wilger Inc. 1 (877) 968-7695 WilgerESC@WilgerESC.com

Example of a few possible configurations of 1/2" Quick-Nut (QN50) Sprayer Fittings

Stainless Tube (SST) to Plug Cap

25120-02

25131-00

25120-03

25130-00

Sweep Tee to Stainless Tube (SST) 41580-00 25129-00 25120-02

25120-03 Sweep Tee to Hose Barb 25120-03 25121-01

Quick-Nut (QN50) thread

to Hose Barb

Sweep 90°

25123-01

25120-02

QN50 Connectors & Components For QN50 Connections

25130-00

Easy to use boom end fittings and connectors to adapt 1/2" Wilger Stainless Steel Tubing (SST) to QN50 fittings.

Component	Description	Part#
SS Tube End	Female Thread End, 2pc	25129-00
Adapters	Male Thread End, split ring	25130-00
Quick Nut	Nut with QN50-F thread	25120-03
Plug	QN50 x Plug Cap	25131-01
O-ring for QN50	#116 O-ring, FKM	25120-02
Connections	#116 O-ring, viton	25120-V2
Thread Adapters	QN100 x 1/4" NPT-F Thread	25127-01
Boom Clamp	Half Clamp, 1/2" SST (0.84" OD)	41580-00

2-piece kit: #25129-01 [Nut] #25129-02 [Sleeve]

25120-02

QN50 Tee & Hose Barb Fittings

Compact & lightweight tee & hose barb fittings for any sprayer boom configuration.

Size/Style	Description	Part#
TEE	QN50M x QN50M x QN50M	25128-00
1/2" Hose	QN50 x 1/2" HB, Straight	25120-01
Barb	QN50 x 1/2" HB, 45° Sweep	25124-01
x QN50	QN50 x 1/2" HB, 90° Sweep	25122-01
3/4" Hose	QN50 x 3/4" HB, Straight	25121-01
Barb	QN50 x 3/4" HB, 45° Sweep	25125-01
x QN50	QN50 x 3/4" HB, 90° Sweep	25123-01

25128-00 Sweep Tee

Case® Thin Wall Stainless (TWS) Tube Fittings

41400-03

25160-04

41403-00

Easy to use boom end fittings and connectors to adapt to 1" Case Thin walled stainless steel sprayer booms

to 1 Odde Thirt Walled Stallifeds Steel sprayer booms.				
Component	Description	Part#		
TWS Male Tube	Male End Adapter, Left Thread	41400-04		
End Adapter (3pc)	Male End Adapter, Right Thread	41400-05		
End Adapter (Spc)	Male End Adapter, Binding Nut	41400-02		
Coupler	TWS-F to QN100-F Coupler	41401-01		
Quick Nut	TWS Nut, use with QN100 HB	41400-03		
O-ring for TWS	#209 square O-ring, FKM	25160-04		
Connections	#209 square O-ring, viton	25160-v4		
Threaded	1" NPT-F x TWS-M Bushing	41403-00		
Adapters	1" NPT-F x TWS-M Bushing kit w/ o-ring	41403-v0		
Boom Clamp	Half Clamp, for 1" TWS (1.31" OD)	41591-00		
	Flush Valve, Short Handle	41402-V0		
Boom End Flush	Flush Valve, Long Handle	41402-LV0		
Valves (BEFV) &	BEFV Seal Repair Kit (2 valves)	25175-11		
Replacement Parts	BEFV Cover Cap	25175-10		
nepiacement Fants	BEFV Handle, Long	25175-13		
	BEFV Handle, Short	25175-03		

Compact Handle

25175-10 piece Adapter TWS Male Thread #41400-04 [l eft] #41400-05 [Right] #41400-02 [Binding Nut]

TWS Flush Valves

Compact & Robust Full Drain Flush Valve

Adapting a TWS Flush Valve to 1" NPT-M End

A bushing kit can adapt to any 1" NPT-M pipe end

41403-v0

Hose Barb Fittings for TWS

TWS Connectors are compatible with QN100 Hose Barb Fittings & Accessories

Size/Style	Description	Part#
Plug	QN100 x Plug Cap	25163-01
Adapters	QN100 x 3/4" NPT-F Thread	25164-01
1" HB	QN100 x 1" HB, Straight	25166-01
x QN100	QN100 x 1" HB, 90° Sweep	25167-01
1-1/4"	QN100 x 1-1/4" HB, Straight	25160-01
Hose Barb	QN100 x 1-1/4" HB, 45° Sweep	25162-01
x QN100	QN100 x 1-1/4" HB, 90° Sweep	25161-01

41400-01 25160-01 Assy 25160-04

TWS to QN100 Coupler

ON100 Female 41401-01

Couples TWS-M and QN100M ends

Case® is a registered trademarks of CNH Industrial America LLC

O-ring Seal (ORS) Fittings & Components

Full Line of Metering Orifices Precision metering orifices for rates as low as 1.8 us gal/acre

> 1/8" to 3/8" Push-In Tube Quick Connect

Outlets

Standard FKM 0-ring Seals

FKM o-rings are used to maximize chemical resistance & durability.

Compatible with Flow Indicators

Wilger ORS fittings are used for both Flow Indicator & EFM systems

ORS to ORS Check Valves

Diaphragm check valves with an ORS-F outlet for in-line outlet control to minimize dripping

Dia. Check Valve

[4Psi] Manual On/Off 20551-P4 Air-Off Operated

in-line strainer

10 PSI

Straight

ORS Manifolds

ORS to COMBO-JET Check Valves

Diaphragm check valves with a Combo-Jet outlet for spray tip or cap metering or spraying.

& Adapters

		_
Check Valve Style	90° Outlet	
Dia. Check Valve	20560-00	١,
[10PSI] Manual On/Off	20561-00	
[4PSI] Manual On/Off	20561-P4	
Air-Off Operated	20562-00	
PWM/no-check	20563-00	
		_

ORS Hose Barb Inlets/Outlets

20552-00

O-ring seal hose barb inlets and outlets. Compatible with all ORS metering orifices.

Hose Barbs	Orientation	Part#
1/4"	Straight	20500-00
3/8"	Straight	20501-00
3/6	90°	20511-00
1/2"	Straight	20502-00
1/2	90°	20512-00
5/8"	90°	20514-00
3/4"	Straight	20503-00
3/4	90°	20513-00
1"	Straight	20504-00
'	90°	20515-00

ORS Outlet Adapters & Plugs

O-ring seal outlets with female threads, plugs and more. Compatible with all ORS metering orifices for metering flow.

Type	Orientation	Part#
1/4" NPT-F	Straight	20519-00
1/4 INF 1-F	90°	20518-00
ORS x Sq Lug	Straight	20549-00
ORS Plug	Straight	20529-00

ORS x Square Lug adapter adapts to any square lug nozzle cap (e.g. Teejet/Hypro/ Varitarget). ¹Ensure hoses connected are supported well

ORS End Caps & Adapters

O-ring seal end caps are used on any ORS-M ports

Style &	Part#					
End (End Cap					
	3/8"	20544-00				
Straight	1/2"	20545-00				
Hose Barb	3/4"	20547-00				
	1"	20548-00				
Push-in Tube	1/4"	20540-00				
(seals on O.D.)	5/16"	20541-00				
(Seals Off O.D.)	3/8"	20542-00				
	1/4"	20535-00				
NPT-F Thread	3/8"	20536-00				
	1/2"	20537-00				
NPT-M Thread	1/4"	20530-00				

ORS Push-in-Tube Outlets

O-ring seal quick-connect outlets that seal around the outside diameter of a tube. Compatible with ORS orifices

Tube O.D.	Orientation	Part#
	Straight	20506-00
1/4"	Double	20509-00
	90°	20516-00
5/16"	Straight	20508-00
5/16	90°	20528-00
3/8"	Straight	20507-00
3/6	90°	20517-00

Push-in-tube Splitter

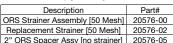
1/4" Straigh

O-ring Seal (ORS) Parts & Manifolds

PRO TIP: Lubricate ORS fittings before assembly

When assembling any flow indicator or 0-ring seal (ORS) parts, using a touch of lubricant (e.g. liquid silicone) on the O-ring makes assembly easy.

ORS In-line Strainer


In-line strainer with removable 50-mesh cartridge can be reversed for universal flow direction.

Replacement Strainer 20576-02

20576-00

ORS Tees & Other Fittings

Description

90° ORS Elbow [M x F]

ORS Tee w/ 1/4" NPT-F [M x M x F w/ 1/4" NPT-F]

3/8" x Blind ORS Tee [Blind F x M x 3/8" NPT-F]

3/8" NPT-F x ORS Tee [F x M x 1/8" NPT-F]

2-Outlet ORS-F Splitter [FxFxM]

1" NPT-F x ORS Tee [M x M x 1" NPT]

A variety of fittings for splitting manifolds, ORS-F outlets or other auxiliary functions.

20520-00

20526-00

20523-00

20524-00

20527-00

20527-00 1/4" NPT-F Port can be drilled out for pressure gauge installation

20525-00

Strainer Assembly [50 Mesh]

Description	Part#
ORS Strainer Assembly [50 Mesh]	20576-00
Replacement Strainer [50 Mesh]	20576-02
2" ORS Spacer Assy [no strainer]	20576-05

20576-05

O-ring Seal (ORS) Manifolds

ORS manifolds can be configured and plumbed to any size, shape or configuration to suit any application equipment needs such as liquid fertilizer manifolds, estate sprayer manifolds, or any other liquid manifold plumbing.

20571-00

20572-00

20573-00

20574-00

Model	O-ring	Part#
4 0 11 114 15 11	FKM	20571-00
1-Outlet Manifold	Body only	20571-01
2-Outlet Manifold	FKM	20572-00
	Body only	20572-01
0.0.41-4.04	FKM	20573-00
3-Outlet Manifold	Body only	20573-01
4-Outlet Manifold	FKM	20574-00
4-Outlet Manifold	Body only	20574-01

20573-01 Body only (no u-clips or o-rings)

No Threads or Sealant Required

Stronger, Compact **Fittings**

Replacement Parts for ORS & Flow Indicator Fittings

Replacement components for ORS Fittings/Kit

	ricpiacoment components for one rittings					
	Product	Type/Material	Part#			
	Ball Retainer	Polypro	20460-02			
U-clip		302 SS	20460-02			
	Flow Indicator Kit	Manifold Feed	20460-11			
	w/o Indicator Body	Isolated Feed	20480-02			
	O-rings for	FKM	20460-03			
	ORS fittings	VITON	20460-15			
	O-rings for	FKM	40225-04			
	metering orifices	VITON	40225-05			

20460-11* 20460-03

*Manifold Kits include: Ball Retainer (#20460-02), 0-ring (#20460-03) 2x U-clips (#20460-04), Green Ball (#20460-08), Red Plastic Ball 40225-04 (#20460-07), Red Glass Ball (#20460-06), 1/2" SS Ball (#20460-05

Mounting Clamps for ORS

Two hole mounting clamps with 1/4" bolt-mount for ORS manifolds and flow indicators

Tube Size Type Part# 1" Sq Tube 302 SS 40550-SS 1-1/4" Sq Tube 302 SS 40551-SS 1-1/2" Sq Tube | 302 SS 40552-SS

O-ring Seal (ORS) Metering Orifices & Charts

Precise metering orifices for metering liquid fertilizers, or chemicals. The easier-to-handle orifices fit in any O-ring seal (ORS-M) fitting port, and cannot be inserted backwards. Available in precision molded color-coded sizes or custom drilled sized orifices.

Use TIP WIZARD for

Simply input rate, speed & spacing, and get the best orifice for the job.

21XXX-00

Metering Orifice

type, seal & ORS Orifice Part#

Color

21500-V01

Molded ORS Orifice | Custom Drilled Orifice | Blank Orifice/Plug VITON O-ring FKM/viton O-ring FKM/viton O-ring 21XXX-00/21XXX-V0 21000-00/2100-V0 21500-VXXX Color-coded*

Calculating required flow for metering orifice selection

To determine the flow rate (or application rate), use the following equations & density conversion chart:

W = Outlet Spacing (INCH) conv = Conversion Factor based on (per outlet) specific gravity/weight of liquid

GPM

= GPA x mph x W x conv

 $G_{PA} = 5940 \times GPM \text{ (per outlet)}$ mph x W x conv

EASY-TO-USE ORS orifice and ball selector calculator available @ www.WILGER.NET

Solution Weight (lbs/ us gallon)	Specific Gravity	Conversion Factor (conv)
8.34 (Water)	1.00	1.00
10.65 (28-0-0)	1.28	1.13
11.65 (10-34-0)	1.39	1.18

	Orifice	Flow Rate (US gallons/minute)		Orifice	Orifice Flow Rate (US gallons/minute)											
	Part#*	10PSI	15PSI	20PSI	25PSI	30PSI	35PSI	40PSI	Part#*	10PSI	15PSI	20PSI	25PSI	30PSI	35PSI	40PSI
	21009-XX	0.005	0.006	0.007	0.008	0.009	0.010	0.010	21075-XX	0.346	0.424	0.490	0.548	0.600	0.648	0.693
	21011-XX	0.008	0.010	0.011	0.013	0.014	0.015	0.016	21078-XX	0.387	0.474	0.547	0.612	0.670	0.724	0.774
	21013-XX	0.011	0.013	0.016	0.017	0.019	0.021	0.022	21500-V03	0.398	0.483	0.563	0.630	0.690	0.745	0.797
	21015-XX	0.014	0.018	0.020	0.023	0.025	0.027	0.029	21081-XX	0.410	0.502	0.580	0.648	0.710	0.767	0.820
- //	21500-V003	0.015	0.018	0.021	0.024	0.026	0.028	0.030	21083-XX	0.450	0.552	0.637	0.712	0.780	0.842	0.901
7.8	21018-XX	0.021	0.025	0.029	0.033	0.036	0.039	0.042	21086-XX	0.468	0.573	0.661	0.739	0.810	0.875	0.935
138	21500-V005	0.025	0.030	0.035	0.039	0.043	0.046	0.050	21089-XX	0.491	0.601	0.694	0.776	0.850	0.918	0.981
*	21020-XX	0.026	0.032	0.037	0.041	0.045	0.049	0.052	21500-V10	0.502	0.615	0.710	0.794	0.870	0.940	1.00
	21022-XX	0.031	0.037	0.043	0.048	0.053	0.057	0.061	21091-XX	0.525	0.643	0.743	0.831	0.910	0.983	1.05
Š	21500-V007	0.033	0.041	0.047	0.053	0.058	0.063	0.067	21093-XX	0.548	0.672	0.776	0.867	0.950	1.03	1.10
	21025-XX	0.039	0.048	0.056	0.062	0.068	0.073	0.079	21096-XX	0.589	0.721	0.833	0.931	1.02	1.10	1.18
Ä	21026-XX	0.043	0.053	0.061	0.068	0.075	0.081	0.087	21500-V125	0.624	0.764	0.882	0.986	1.08	1.17	1.25
ů.	21027-XX	0.046	0.056	0.065	0.072	0.079	0.085	0.091	21102-XX	0.652	0.799	0.923	1.03	1.13	1.22	1.30
F,	21028-XX	0.049	0.060	0.069	0.078	0.085	0.092	0.098	21104-XX	0.675	0.827	0.955	1.07	1.17	1.26	1.35
	21500-V01	0.050	0.062	0.071	0.079	0.087	0.094	0.100	21107-XX	0.733	0.898	1.037	1.16	1.27	1.37	1.47
,) (4)	21029-XX	0.064	0.078	0.090	0.100	0.110	0.119	0.127	21500-V15	0.751	0.919	1.061	1.19	1.30	1.40	1.50
r c	21031-XX	0.064	0.078	0.090	0.100	0.110	0.119	0.127	21110-XX	0.774	0.948	1.094	1.22	1.34	1.45	1.55
	21500-V015	0.075	0.092	0.106	0.119	0.130	0.140	0.150	21113-XX	0.820	1.00	1.16	1.30	1.42	1.53	1.64
N	21035-XX	0.081	0.099	0.114	0.128	0.140	0.151	0.162	21116-XX	0.860	1.05	1.22	1.36	1.49	1.61	1.72
4	21037-XX	0.087	0.106	0.122	0.137	0.150	0.162	0.173	21120-XX	0.889	1.09	1.26	1.41	1.54	1.66	1.78
	21039-XX	0.098	0.120	0.139	0.155	0.170	0.184	0.196	21125-XX	0.981	1.20	1.39	1.55	1.70	1.84	1.96
X	21500-V02	0.104	0.127	0.147	0.164	0.180	0.194	0.208	21500-V20	0.999	1.22	1.41	1.58	1.73	1.87	2.00
	21041-XX	0.110	0.134	0.155	0.173	0.190	0.205	0.219	21128-XX	1.02	1.25	1.45	1.62	1.77	1.91	2.04
	21043-XX	0.115	0.141	0.163	0.183	0.200	0.216	0.231	21130-XX	1.06	1.30	1.50	1.68	1.84	1.99	2.12
á	21500-V025	0.127	0.156	0.180	0.201	0.220	0.238	0.254	21136-XX	1.19	1.46	1.68	1.88	2.06	2.23	2.38
3/4	21046-XX	0.133	0.163	0.188	0.210	0.230	0.248	0.266	21140-XX	1.26	1.55	1.79	2.00	2.19	2.37	2.53
	21047-XX	0.139	0.170	0.196	0.219	0.240	0.259	0.277	21144-XX	1.31	1.61	1.85	2.07	2.27	2.45	2.62
Ť	21049-XX	0.150	0.184	0.212	0.237	0.260	0.281	0.300	21147-XX	1.35	1.65	1.90	2.13	2.33	2.52	2.69
à	21500-V03	0.150	0.184	0.212	0.237	0.260	0.281	0.300	21150-XX	1.44	1.77	2.04	2.28	2.50	2.70	2.89
*	21051-XX	0.162	0.198	0.229	0.256	0.280	0.302	0.323	21152-XX	1.49	1.82	2.11	2.36	2.58	2.79	2.98
r.	21052-XX	0.167	0.205	0.237	0.265	0.290	0.313	0.335	21156-XX	1.55	1.90	2.20	2.46	2.69	2.91	3.11
4	21055-XX	0.191	0.233	0.269	0.301	0.330	0.356	0.381	21161-XX	1.63	2.00	2.31	2.58	2.83	3.06	3.27
į,	21500-V04	0.202	0.247	0.286	0.320	0.350	0.378	0.404	21166-XX	1.71	2.10	2.42	2.71	2.97	3.21	3.43
6.	21060-XX	0.225	0.276	0.318	0.356	0.390	0.421	0.450	21172-XX	1.88	2.31	2.66	2.98	3.26	3.52	3.76
ř	21061-XX	0.231	0.283	0.327	0.365	0.400	0.432	0.462	21177-XX	2.00	2.45	2.83	3.16	3.46	3.74	4.00
6	21063-XX	0.248	0.304	0.351	0.393	0.430	0.464	0.497	21182-XX	2.08	2.55	2.95	3.30	3.61	3.90	4.17
4	21500-V05	0.254	0.311	0.359	0.402	0.440	0.475	0.508	21187-XX	2.21	2.70	3.12	3.49	3.82	4.13	4.41
	21064-XX	0.254	0.311	0.359	0.402	0.440	0.475	0.508	21196-XX	2.45	3.00	3.46	3.87	4.24	4.58	4.90
Ĭ	21065-XX	0.260	0.318	0.367	0.411	0.450	0.486	0.520	21205-XX	2.65	3.25	3.75	4.19	4.59	4.96	5.30
	21067-XX	0.277	0.339	0.392	0.438	0.480	0.518	0.554	21213-XX	2.85	3.49	4.03	4.51	4.94	5.34	5.70
	21500-V06	0.300	0.368	0.425	0.475	0.520	0.562	0.600	21218-XX	2.98	3.65	4.21	4.71	5.16	5.57	5.96
	21070-XX	0.306	0.375	0.433	0.484	0.530	0.572	0.612	21234-XX	3.47	4.25	4.91	5.49	6.01	6.49	6.94
1	21073-XX	0.329	0.403	0.465	0.520	0.570	0.616	0.658	21250-XX	4.00	4.90	5.66	6.33	6.93	7.49	8.00

Wilger Visual Ball Flow Indicators

The Flow Incleator Advantage

See Any Application Accurately

1/4" Bolt mount on each column **Fittings** Swivel 360°

Clear Sight Column

Superior Chemical Resistance

Simple. without Electronics

No Threads or Sealant Required

Manual ON/OFF Check Valves
Easy to turn off for maintenance or convert equipment to mid-row banding

Larger Metering Orifices Easier handling & cleaning

> Consistent Metering & Easy Cleaning

Ball Suspended Higher

Desired Flow

Ball Suspended Lower

Indicates blockage or plug

Simple Operation. Critical Feedback.

Example of flow indicator function; Overlay colors are for visual purposes only

Flow Indicators are used on Planting Equipment & Sprayers to indicate relative flow blockage or overage.

Manifold Feed - Ball Flow Indicators

For monitoring many lines from a single feed (e.g. Liquid fertilizer kits for a planter)

Retainer	
Sight Column	
Red Glass Ball	
4" Bolt-Mount Hole	
ackable IS-F port or inlet	TOO TO

Model	Kit Type*	Part#
Ultra Low Flow	Bulk Kit	20475-BULK
[0.01-0.24 us gpm]	Bagged Kit	20475-00
[0.01-0.24 us gpm]	Body Only	20475-01
Low Flow [0.05-0.65 us gpm]	Bulk Kit	20470-BULK
	Bagged Kit	20470-00
	Body Only	20470-01
Standard Flow	Bulk Kit	20460-BULK
	Bagged Kit	20460-00
[0.07-2.70 us gpm]	Body Only	20460-01

*Manifold Kits include: Indicator Body, Ball Retainer (#20460-02), O-ring (#20460-03), 2x U-clips (#20460-04), Green Ball (#20460-08), Red Plastic Ball (#20460-07), Red Glass Ball (#20460-06), 1/2" SS Ball (#20460-05)

Flow Indicator & onnection Specifications'

Max Operating Pressure: 100psi / 7BAR

Max Metered Flow Rate: Up to 8.0 us gpm per column Maximum Operating Temp: 185°F O-ring Seals: FKM (std) / Viton U-clip: Stainless Steel (302) ORS Fittings: Glass-reinforced

Stackable ORS-M port can be capped off Polypropylene Flow Column Material: TPX™ (Polymethylpentene)

Isolated Feed - Ball Flow Indicators

For monitoring single lines from individual feeds (e.g. Squeeze pump monitoring, chemical injector pumps)

Model	Kit Type**	Part#	
Law Flaw	Bulk Kit	20490-BULK	
Low Flow [0.05-0.65 us gpm]	Bagged Kit	20490-00	
[0.05-0.65 us gpm]	Body Only	20490-01	
Standard Flow	Bulk Kit	20480-BULK	
[0.07-2.70 us gpm]	Bagged Kit	20480-00	
	Body Only	20480-01	

**Isolated Kits include: Flow Indicator Body, Ball Retainer (#20460-02), U-clip (#20460-04), Green Ball (#20460-08), Red Plastic Ball (#20460-07), Red Glass Ball (#20460-06), 1/2" Stainless Ball

Inlet feed uses Combo-Jet cap. Refer to COMBO-JET caps & adapters.

How to Tell Columns Apart? Check the top of the column

FRONT: OW FLOW

Required Storage for Flow Indicator Columns

Wilger Flow Indicator columns are made of a specialty UV-stabilized compound (TPX™) that maximizes chemical resistance, providing compatibility for a huge range of chemical applications As with any plastic, UV exposure degrades the flow indicator columns.

To maximize flow indicator column clarity & longevity, completely cover

the flow indicator columns from UV exposure (sun/etc.) when not in use.

PRO TIP: Using two balls simultaneously helps

If a lighter ball is suspended too high, using the next heavier ball below can help cover changes in application rates or speeds.

Wilger Visual Ball Flow Indicators - Balls & Setup Guide

Flow Indicator Balls & Selection Chart

Weighted balls are used inside flow indicator columns and within the operational flow range, will suspend within the column, showing relative flow rate to other flow columns.

Ball Description & Color	Part #	Flow Indicator Columns & Flow Ranges*		
	Part #	Ultra Low Flow	Low Flow	Standard Flow
Orange Polypropylene Ball*	20460-13	0.01-0.04 us gpm	0.05-0.12 us gpm	0.07-0.25 us gpm
Green Polypropylene Ball*	20460-08	0.01-0.04 us gpm	0.05-0.12 us gpm	0.07-0.25 us gpm
Red Celcon Ball*	20460-07	0.02-0.06 us gpm	0.06-0.16 us gpm	0.10-0.35 us gpm
White Celcon Ball*	20460-18	0.02-0.06 us gpm	0.06-0.16 us gpm	0.10-0.35 us gpm
Pink Celcon Ball*	20460-14	0.02-0.06 us gpm	0.06-0.16 us gpm	0.10-0.35 us gpm
Red Glass Ball	20460-06	0.06-0.13 us gpm	0.12-0.26 us gpm	0.21-0.72 us gpm
1/2" Stainless Steel (302) Ball	20460-05	0.13-0.24 us gpm	0.18-0.65 us gpm	0.40-1.70 us gpm
7/16" Stainless Steel (302) Ball	20460-10	n/a	n/a	1.00-2.70 us gpm

Applying Dark Fertilizers & Variable Rate Applications

With some liquid fertilizers and products being darker (e.g humic acid content), consider a few tips that may help visual representation of flow

For Red Liquids

(e.g. Paralign Fertilizer)
White backboard for improved visibility.
White celcon ball for red

For Dark Liquids

(e.g. Humic Acid) Pink celcon ball for black & dark liquids.

For Variable Rate

Considering using two balls to better illustrate changes in flow rate. Select a lighter ball for the lower rate, and heavier for the higher rate

*Density/Viscosity of liquid used can effect operating range. In very dense liquids, balls may float.

Ball Selection Example

Liquid Weight: 10.67 lbs/ US Gallon **Speed:** 5 mph

Speed: 5 mph Outlet Spacing: 30 inch

Ultra-Low Flow

Rate: 4.5 US Gal/Acre Flow Rate: 0.129 us gpm Ball: Red Glass

Low Flow

Rate: 10 US Gal/Acre Flow Rate: 0.286 us gpm Ball: 1/2" Stainless

Standard Flow

Rate: 20 US Gal/Acre Flow Rate: 0.571 us gpm Ball: Red Glass

Guide to Building a Liquid Kit with Flow Indicator Manifolds

STEP 1 Select: Manifold-Feed or **Isolated-Feed** Style Flow Columns

Choose the style of flow column that suits the application equipment being monitored

STEP ② Determine Flow Indicator Column Size (e.g. Ultra Low Flow, Low Flow, Standard Flow)

Depending on the flow rates required, select the flow column that would provide the best fit to the required flow rate or range. Usually this is accomplished by finding a column size that has your flow rate towards the middle of the range or higher.

STEP 🕙 Select: Flow Indicator Balls to use

Consult the ball flow chart to determine which balls should be used. It can be optional to use two balls to illustrate a flow rate range.

STEP 4 ORS Check Valves [Optional]

A variety of check valves are available. Typically an ORS to ORS check valve would be used unless adapting a manifold to combo-jet caps. One check valve is required per flow indicator.

STEP © ORS Inlet Feeds, Tees, & Strainers

Determine how many manifolds are required, whether the manifolds are fed with a Tee fitting, as well as whether an in-line strainer will be added to each manifold. Determine the size & type of inlet fitting. One set of inlet/tee/strainer is required per manifold.

STEP © ORS Metering Orifices [Optional]

Any metering manifold should have a means to meter the flow for each row to keep rows consistent. Without a metering orifice, the flow rates between rows can vary greatly. One metering orifice would be required per flow indicator column.

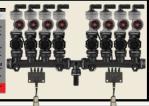
STEP 🕖 ORS Outlet

Select the size, and style of outlet to be used for each row of product. Consider applying a small bit of lubricant (e.g. liquid silicone) on the o-ring to air in easy installation of outlets and other ORS fittings. The outlet would hold the ORS metering orifice, if used.

STEP 3 ORS End Caps & Adapters

A variety of end caps are available as adapters which can be used for many situations, but typical an ORS end cap would be used. Two end caps are required per manifold if a Tee fitting is used.

Do you plant at night or in low visibility? Take a look at Wilger's Electronic Flow Monitoring (EFM) System


Wilger's row-by-row flowmeter uses the same ORS parts and manifolds, and can be simply added in-line for existing manifolds.

Simply add a flowmeter for each row, and connect the electronic harness to see actual flow rate on each row (up to 196 rows), for flow rates of 0.04-1.53 us gpm.

Wilger Electronic Flow Monitoring System

egaliavia grikolinoM woFl einerfeele entr

See Any Application with Row-by-Row Accuracy

The Wilger electronic flowmeter (EFM) is a serviceable flowmeter designed & built specifically for agricultural chemical & liquid applications.

Fittings Swivel 360°

Crystal Clear Flowmeter

Superior Chemical Resistance

Serviceable Flowmeter for Ag.

High Accuracy Flowmeter

Patented Flowmeter Jets Canadian Patent No. 2951789 AUS Patent No. 2017376849 U.S. Patent No. 10.845,228

Crystal Clear FlowmetersEnables easy system troubleshooting & verification

Monitors Huge Flow Range Accurately measures flow rates

of 0.04-1.53 us gpm per row

High Resolution Hall-Effect Sensor & Ceramic Magnet combo provide accurate pulse frequency to determine flow

Starter Starter Starter Starter Starter Starter Total: 4.168 Gal/Min Rate: 10.0 Gal/Mar Arg. 0.185 Gal/Min Rate: 2.17 Gal/Mar Arg. 0.385 Gal/Min Rate: 2.17 Gal/Mar Arg. 0.185 Gal/Min Rate: 2.17 Gal/Mar Arg. 0.185 Gal/Min Rate: 2.17 Gal/Mar Arg. 0.185 Gal/Min Rate: 2.17 Gal/Mar Arg. 0.105 Gal

FREE EFM APP POWERED BY

The Electronic Flow Monitoring system (powered by Agtron) requires an Android 10 OS Tablet or newer

Trouble-free Connectors

Keyed Deutsch connectors ensure weather-sealed wiring

Monitor up to 3 Products

Simultaneously monitor up to 3 products within the same system

Monitor Any Sized Equip.

Monitor up to 200 rows or outlets on any equipment

Custom High/Low AlarmsCustomize threshold alarms

Custom Screen Layouts
Customize screen layouts
between products, sections,
or any other way

Chemical Resistance Clear TPX material provides

visual & non-stick surface

Easy RetrofitEasily retrofits to any existing ORS or Flow Indicator Fittings

Simple Harnessing

Composed of an ECU with dairy-chained product nodes & sensors

WIFI communication

ECU generates WIFI straight into the cab

Build your Electronic Flow Monitoring System with help from www.wilger.net

Use the new EFM system parts kit builder available at www.wilger.net. Simply input your implement size and layout and receive a parts list & quote. It just takes a minute.

AGTRON

Need help with EFM system SETUP, USE & Troubleshooting? Check www.wilger.net

EFM System Manual

The manual is accessible online (wilger.net) and within the EFM app via the (?) button. It contains Setup, Troubleshooting, Considerations, Maintenance and more.

Video Setup Guide

The video describes in detail considerations and how to reference sensor locations properly and usage in the EFM system app.

Online Troubleshooting

The dedicated page on the website has the most common recent fixes, guides, and troubleshooting information.

Check it for quick troubleshooting to save time.

Wilger Electronic Flow Monitoring System Components

Electronic Flowmeters & Jets

A clear flowmeter that connects to any ORS outlets, with an accurate flow range of 0.04 - 1.53 us gpm, using patented flow stabilizing jets.

20580-00 EFM KIT

Product

Electronic Flowmeter Body

[0.04-1.53 us gpm]

Replacement Jets

(without 50 mesh

snap-in strainer)

20580-06 Body Assembly

INDESED VER WEED DESCON Easier removal & insertion shipping in 2024

Jets now include a lip for easier insertion and removal without

Description Flowmeter Assy Kit

Body Assembly (no jets)

Body Only (clear plastic

Blue (0.18 to 0.98 us a

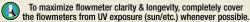
en (up to 0.12 us

Required Storage for Flowmeters Wilger Flowmeters are made of a specialty UV-stabilized compound (TPX") that maximizes chemical resistance, providing compatibility for a huge range of chemical applications.

20580-00

20580-06

20580-01

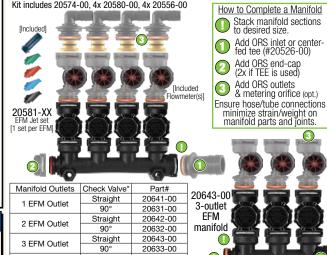

20581-01

20581-03

20581-05

20581-07

As with any plastic, UV exposure degrades the flow indicator columns



Electronic Flowmeter Manifolds

Pre-assembled manifolds [1-4 Outlets] with a flowmeter and check valve. Simply assemble manifolds, add inlet/outlets, caps and sensor cables.

20644-00 Four Outlet EFM Manifold Kit w/ Check Valve

1 EFM Outlet	Straight	20641-00	2	
	90°	20631-00	3	
2 EFM Outlet	Straight	20642-00		
Z EFIVI Outlet	90°	20632-00	r	
3 EFM Outlet	Straight	20643-00		
3 EFIVI Outlet	90°	20633-00		
4 EFM Outlet	Straight	20644-00		
4 EFIVI Outlet	90°	20634-00		
4PSI check valves available: change '-00' to '-P4'. For ultra-low fl				

flow (<0.01 us gpm), 4PSI may be required.

DEMO ECU & Small Planter Kit (16 or less rows, non-expandable)

The following is a Compact ECU DEMO unit, which can be used for showroom/demonstrations, but also functional for planters with 16 rows or less being monitored. The CAN to POWER/USB adapter can be used where WIFI is not an option (tradeshows, etc.). The unit also broadcasts via WIFI.

Product	Description of DEMO Kit Parts	Part#
DEMO ECU	DEMO ECU with built-in 16CH node. One per Demo unit (requires 12v x 1.25 amp)	20625-01
DEMO 16CH Harness	DEMO ECU Harness, with A/B/C/D for up to 4 quad- sensor cables to be connected	20625-02
DEMO Power Supply Harness	CAN to USB (for wired tablet without WIFI) & 12v Power Cable (2-wire, 7' length). USB-A port is powered to supply tablet power.	20625-03
Quad-Sensor Cable	A normal quad-sensor cable, used in any Wilger EFM systems via 6-pin connector. Connects for the A/B/C/D of 20625-02. Order 4x 20585-00 for full 16 sensors.	4x 20585-00
Antenna (7")	If ECU connection is via WIFI, an antenna should be used to connect to the tablet.	20603-03
EFM Manifolds	1,2,3, or 4-outlet manifolds with check valves and an included EFM flowmeter. Simply order inlet/outlets/tee and end caps to complete manifold.	20644-00 (4-outlet)

Example 16-row manifold for demonstration

EFM DEMO System Parts Checklist

ELECTRONICS Parts 1x DEMO ECU (#20625-01)

1x Demo Product Harness (#20625-02) 1x ORS Tee (#20526-00)

1x Antenna (#20603-03)

4x Quad-sensor cable (4x #20585-00) ■ 1x Android Tablet & Mount (non-Wilger) ■ 16x Metering Orifice (#21500-v03)

(e.g. Samsung Tab A8)

PLUMBING Parts

4x 4-Outlet Manifolds (#20644-00)

1x Demo Power/USB Cable (#20625-03) 1x 90° 1/2" Hose Inlet (#20513-00) 16x 1/4" Push-in-tube (#20516-00)

2x End Cap (#20521-00) 1x 5GPM Electric pump (non-Wilger)

Small water tank w/ plumbing

Compact ECU *parts not to scale* 20625-01

20625-03 CAN to 12v Power Harness

Want to show what the system looks like, without a pump? Download the app, enter info, and plug in some example sensor information, and run the app in TEST/ DEMO mode. (Simulated info) Contact Wilger for more info.

Connects to A / B / C / D 4x 20585-00 20585-00

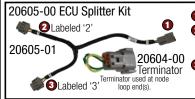
Quad-sensor cable

Wilger Electronic Flow Monitoring ECUs & Electronics

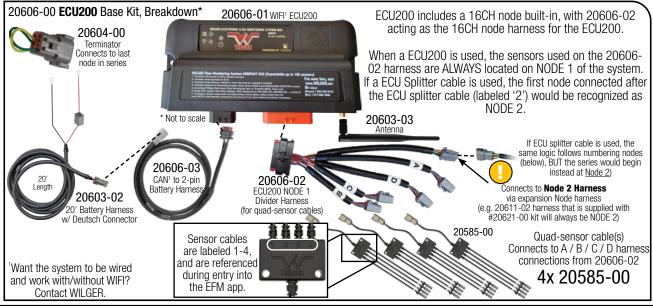
Base Electronic ECU & Kits for EFM Systems (expandable up to 196 rows/sensors)

Electronic Control Units (ECU) & components used in EFM systems. ECUs are used to monitor up to 196 outlets, across up to 3 products.

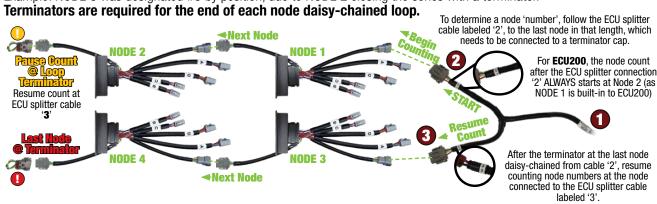
Product	Kit Includes	Part#
ECU100 Base Kit	ECU100, 20' 12v Battery Harness (with fuse), Terminator, 7" Antenna	20603-00
ECU200 Base Kit	ECU200, CAN to 12v Harness, 20' 12v Battery Harness (with fuse), ECU200 Node Harness (#20606-02), Terminator, 7" Antenna, 4x Quad- sensor cables (#20585-00)	20606-00
ECU Splitter Kit	ECU Splitter Cable, Terminator	20605-00
ECU/Node to Node	12' Extension Harness (Node to ECU/Node)	20616-12
Extension Harness	24' Extension Harness (Node to ECU/Node)	20616-24


NEW ECU100 or ECU200? Whats the difference?

ECU100 and ECU200 share identical function as a controller. Both create their own WIFI signal to the tablet in the cab, sending row-by-row flowmeter information. They differ somewhat in the first node connected, and potentially the use of other components, the harnesses, and cables used. The ECU200 effectively integrates the first 16CH node, as well as provides a CAN plug for future-proofed connections.



		The same of the sa	
ECU Type	ECU100	ECU200	
Combined Node?	No integrated 16CH node	First 16CH node built-in	
Expandable Size?	Yes, up to 196 sensors Yes, up to 196 ser		
Power Cable	2-pin 12v PWR harness CAN to 2-pin 12v PWR har		
Compatibility	Both are compatible to all EFM system components		



- ① Connects to ECU100 or ECU200.
- 2 If ECU100, first node is Node 1. If ECU200, first node is Node 2. (As ECU200 has built-in Node1)
- Onnects to 2nd node series loop. Node # determined by last node in 1st series loop.

Example: NODE 3 was designated #3 by position, due to NODE 2 closing the series with a terminator.

Wilger Electronic Flow Monitoring System Components

16 Channel (16CH) Product Node Kits & Components

16CH Product nodes provide communication between sensors and ECU.

Product	Description	Part#	
16CH Node Kit	incl. 16CH Node, 16CH Harness, 4x Quad-sensor cables	20621-00	
Quad-Sensor Cable	4-Sensor Cable (18" long) for 16CH Node	20585-00	
16CH Node/Harness	incl. 16CH Product Node, 16CH Node Harness	20611-00	
16CH Harness Cap	16CH Harness Cover Cap	20612-00	
Sensor Cover Cap	Covers a single sensor on a quad-sensor cable	20585-01	
Node to Quad-Sensor	6' Extension Cable (16CH Harness to quad-sensor cable)	20615-06	
Extensions	12' Extension Cable (16CH Harness to quad-sensor cable)	20615-12	

Capping Unused Connections & Sensors

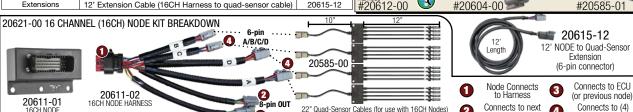
For proper function of your EFM system, each unused connection must be sealed with a node harness cover cap, sensor cap, or terminator. Unsealed Connections have increased chance of shorts, electrical shock, or damage to the system or equipment.

Unused Node Connections

Quad-Sensor Cables (for use with 16CH Nodes)

(4x 20585-00 included in 16CH node kit)

Connects to next


node in series

Unused Sensor Cap unused

Connects to (4)

quad-sensor cables

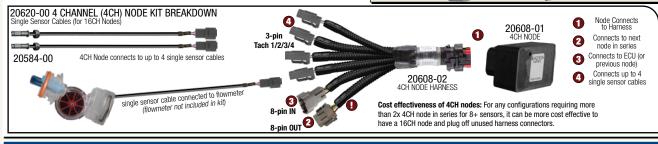
Ū,

🗿8-pin IN

Channel (4CH) Product Node Kits & Components

4 Channel Product Nodes & kits provide communication between sensors and ECU. Sensor cables cannot be interchanged between 16CH and 4CH node harnesses. 4CH nodes and sensors are available in limited stock, as Wilger is transitioning to using the 16CH node and components as standard.

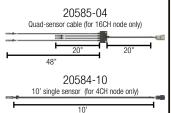
Product	Description	Part#
4CH Node Kit	incl. 4CH Node, 4CH Harness, 4x 6" single-sensor cables	20620-00
4CH Node/Harness	incl. 4CH Product Node, 4CH Node Harness	20608-00
4CH Harness Cap	4CH Harness Cover Cap	20609-00
Single-Sensor	6" single-sensor Cable for 4CH Node harness	20584-00
Cables (lim. qty)	10' single-sensor Cable for 4CH Node harness	20584-10


Capping Unused Connections

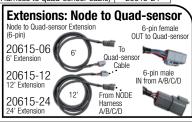
For proper function of your EFM system, each unused connection must be sealed with a 4CH node harness/sensor cover cap, or terminator.

Unused Sensor Connections Cap unused 4CH node harness connections #20609-00

Cap all 'last node in series' connections #20604-00



ECU Splitters, Extended Harnesses & Cables


A variety of harnesses available for alternate EFM system configurations or replacement cables and caps

Product	Description	Part#
12v Power Extension	Extends 2-pin power connection by 35'	20603-07
Antenna Extension	Extends connection to ECU antenna, 30' length	20603-05
4' Quad-sensor Cbl	4' Long Quad-sensor cable (48"/20"/20"/48")	20585-04
10' Single Sensor Cbl	10' long single sensor cable	20584-10
Node to Node	12' Extension Cable (8-pin Harness male to 8-pin female)	20616-12
Extensions	24' Extension Cable (8-pin Harness male to 8-pin female)	20616-24
Node to Quad-Sensor	6' Extension Cable (16CH Harness to quad-sensor cable)	20615-06
Extensions	12' Extension Cable (16CH Harness to quad-sensor cable)	20615-12
	24' Extension Cable (16CH Harness to quad-sensor cable)	20615-24

30' Antenna Extension 30' co-axial antenna extension cable to bring ECU antenna closer to the tractor 20603-05 30' Extension ECU antenna has 100' range (50' one-wa

Flowmeter Component Parts

Electronic flow monitoring system parts and components are easily replaceable. For individual component parts that were not listed in the above product breakdowns, find the below.

EFM, Body Assy, TPX, ORS (no jets, body assy only) 20580-06

20580-01 EFM, Body Only, TPX

20580-02 EFM, Module c/w O-ring (no sensor)

20580-08 EFM, Impeller Assembly (20580-09 + 20580-10)

20580-10 EFM, Impeller Magnet, Ceramic

20580-11 EFM, Impeller Axle Pin 20580-13

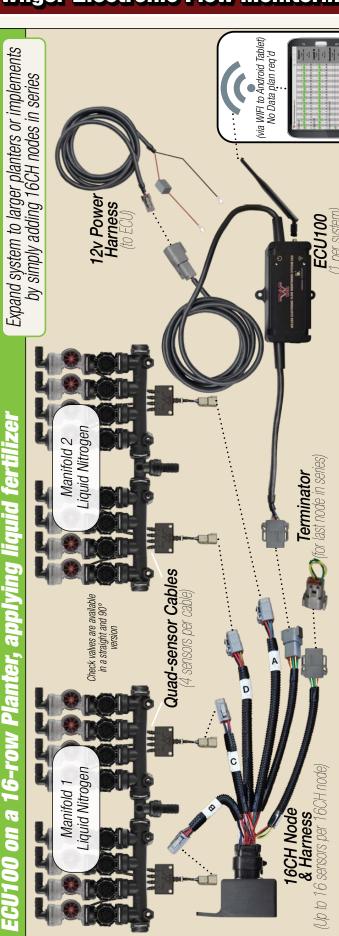
EFM, O-Ring, #119, VITON® (for EFM module) 20583-00 EFM Sensor Cable, Single w/o Connector

20585-01 EFM sensor rubber cover (for unused sensor cables)

20583-003

*Non-stocked/Custom Order

20580-02



Wilger Electronic Flow Monitoring System ECU100 Example

ECU100: Component Checklist for Wilger's Electronic Flow Monitoring System

As equipment & implements greatly vary, this is a simplified approach assuming the implement is fairly standard and evenly spread, with the manifold centrally located

It may be cost effective to move manifolds from the wings of the implement, to the center.

- **Order 1 ECU100 kit** per system. (#20603-00)
- outlets by 16. Round up to nearest whole number. Order that many 16CH Node kits. (#20621-00) Add the # of outlets (including multiples for monitoring multiple products). Divide the total # of
- Order 1 EFM assembly kit (#20580-00) per outlet (incl. multiples for monitoring multiple products) Alternatively, order EFM manifold kits (#20631-00 to #20634-00) to fit your requirements for sections

4CH Node kits can be effective for 'extra' outlets in systems, but 16CH node kits are typically cost effective.

- Order 1 ORS Outlet (Page 16) & 1 ORS Check Valve (#20551-00) per EFM body. Order manifolds & plumbing components (& end caps) suited for the implement size.
- [Optional if metering orifice req'd] **Order an ORS orifice for each outlet**, ensure proper metering orifice size for each rate. Use Tip Wizard @ www.wilger.net or via app, to ensure proper sizing.

☐ 1x ECU100 KIT per system

1x ORS Manifold Outlet per outlet

1x ORS Outlet Fitting per outlet

1x ORS Check Valve per outlet

- 1x 16CH Node Kit per 16 outlets 1x Flowmeter (EFM) per outlet Extension harnesses if req'd
- 1x Android Tablet [Android 10 0S or newer. Avoid non-brand name tablets that may not be running full 0S)]

For more information, start the conversation on building your EFM system with your Wilger dealer, and for more pictures/information, visit our website at: www.WILGER.NET

1x End Cap per manifold [2x if center Tee]

1x Inlet Feed or Tee per manifold

1x Metering Orifice per outlet [or alt.]

Make sure to take advantage of video tutorials on initial setup and planning of EFM system

EFM VIDEO TUTORIALS - Setting up EFM App on Android Tablet

app on your Android Tablet. Videos on YOUTUBE, or accessible from www.WillGER.ner

Use the new EFM system parts kit builder available at www.wilger.net. Simply input your implement size and layout and receive a parts list & quote. Simple as that.

your EFM system liquid kit on www.WILGER.NET

Build

Wilger Electronic Flow Monitoring System ECU200 Example

ECU200; Component Checklist for Wilger's Electronic Flow Monitoring System

Since the ECU200 includes the FIRST 16CH product node, it changes the ordering checklist slightly.

Order 1 ECU200 kit per system. (#20606-00)

Add the # of outlets (incl. multiples for monitoring multiple products). **First subtract 16 outlets from** the total (as the first 16 are included with ECU200), then divide the total # of outlets by 16.

Round up to nearest whole number. **Order that many 16CH Node kits**. (#20621-00) 4CH Node kits can be effective for 'extra' outlets in systems, but 16CH node kits are typically cost effective.

- Order 1 EFM assembly kit (#20580-00) per outlet (incl. multiples for monitoring multiple products) Alternatively, order EFM manifold kits (#20631-00 to #20634-00) for pre-built manifolds with flowmeters installed. m
- Order manifolds & plumbing components (& end caps) suited for the implement size. Order 1 ORS Outlet & 1 ORS Check Valve (#20551-00 style) per EFM body
- [Optional if metering orifice req'd] **Order an ORS orifice for each outlet**, ensure proper metering orifice size for each rate. Use Tip Wizard @ www.wilger.net or via app, to ensure proper sizing.

G

(via WIFI to Android Tablet)

No Data plan reg'o

1x ORS Manifold Outlet per outlet PLUMBING Parts 1x ECU200 KIT per system, incl. 1st 16CH 1x 16CH Node Kit per adtl. 16 outlet **ELECTRONICS Parts**

1x Flowmeter (EFM) per outlet Extension harnesses if req'd

1x Android Tablet [Android 8.0 0S or newer]

1x End Cap per manifold [2x if center Tee]

1x Inlet Feed or Tee per manifold

1x ORS Outlet Fitting per outlet

1x ORS Check Valve per outlet

1x Metering Orifice per outlet [or alt.]

For more information, start the conversation for your EFM system with your WILGER, NET Wilger dealer, and for more pictures/information, visit our website at:

EFM VIDEO TUTORIALS - Setting up EFM App on Android Tablet

app on your Android Tablet. Videos on YOUTUBE, or accessible from www.WfllGER.ner Make sure to take advantage of video tutorials on initial setup and planning of EFM system

Simply input your implement size and layout and receive a parts list & quote. Simple as that. Use the new EFM system parts kit builder available at www.wilger.net.

your EFM system liquid kit on www.WILGER.NET

Build

Wilger Electronic Flow Monitoring System App

Product 2 & 3 Setup: [Optional if using multiple products]

Set Product 1 Outlet spacing
Prod 1 Alarm threshold
Jet selection
(Color of jet used in flowmeter)

Product 1 Setup:

GREEN JET

BLUE JET

RED JET

EFM System App Preview - Setup & Go

Download the Wilger Electronic Flow Monitoring System App.
 (GooglePlay Store, or APK download from www.wilger.net/efm.apk)

Electronic Flow Monitoring System Setup

ECU Setup Page

ECU WIFI Password

of nodes connected to system

Serial # on ECU case [IMPORTANT]

Single or Multi-Product/screen

Multi Product (Max 196 Runs)

Leave at default 120

Set to # seconds for page scroll

#0

US GAL/MIN

Serial number may have 7-9 digits]

Preferred Flow UNIT

Preferred Application Rate UNIT

Set Fixed Application Speed

Kph

Mph

16.00 Inch mm

Inch mm

10

Inch mm

12

- Power up ECU, connect tablet to ECU WIFI, and complete ECU setup, including specifying product-specific alarm, outlet spacing & jet selection.
- (WIFI password is ECU serial number; eg. "WILGER_EFI_1234567") ECU serial number may be between 7-9 digits.
- Set row/outlet locations (on screen) by pairing row # and physical location of sensor (which node/cables it is connected to). Customize page layout by preference (group balls by sections or any other layout by user preference).
- System will now monitor each individual flowmeter individually (on detailed snapshot screen and alarms), by product (with visual balls), and as a whole system.

Populate each row of info (corresponds to 1 ball, and up to 24 balls/section) for each sensor used in the system

Sensor Setup Page

E • 3

Sensor Setup Area:

(1-4) the sensor is connected 10 Sensor # (SNR) - 1/2/3/4 Select the cable number Change 6 1-10 tabs for Section Screens [Multi-Product/Screen View] 1-3 tabs for Product Screens [Single-Product/Screen View] Select the node harness letter the sensor is connected to. Divider Letter (DIV) - A/B/C/D: default 0 Product 1-3 Selection & Label Setup IN sensor is connected to. Set to N/A for blank slot. Electronic Flow Monitoring Sensor Setup က Node Number (NODE): Select the node # the Row Label: Name the sensor by outlet # or name (max 3 characters) 0 Product

Now that basic setup is complete, explore the individual row detailed screens, application widgets, advanced calibration screen, and equipment profile saving/recalling as well

Wilger makes spray tips for applicators who care about how they spray.

Wilger makes nozzle bodies & components that address and support best practices being developed in the crop protection industry.

Wilger makes flow monitoring & metering components that are critical to maintaining effective and consistent application.

CANADA
Wilger Industries Ltd.
Site 412, Box 280, RR#4
Capital Circle W & Auction Mart Rd.
Saskatoon, SK, Canada S7K 3J7
Phone: 1 (833) 242-4121
Fax: (306) 242-4122
Email: info@wilger.net

UNITED STATES
Wilger Inc.
255 Seahorse Drive
Lexington, TN, USA
38351-6538
Phone: (877) 968-7695
Fax: (877) 968-7613
Email: WilgerEsc@WilgerEsc.com

ARGENTINA
Wilger Argentina
Mitre 699
San Nicolas (2900)
Buenos Aires, Argentina
Phone: +54 9 336 4596710
Email: cjporras@gmail.com

Focused on Application
Performance for
Over 45 Years

All Wilger trademarks and logos are owned by Wilger Industries Ltd. All other brand or product names are

Printed in Canada